{"title":"Memory Augmented Adaptive Identification and Control of Switched Euler–Lagrange Systems","authors":"Pritesh Patel;Sayan Basu Roy;Shubhendu Bhasin","doi":"10.1109/LCSYS.2025.3533896","DOIUrl":null,"url":null,"abstract":"This letter proposes an online adaptive identification and control method for a switched Euler-Lagrange systems ensuring global exponential stability of the tracking error, filter tracking error and parameter estimation errors to the equilibrium point. Parameter estimators are designed for every subsystem to help with parameter learning during both the active and inactive phases of the subsystem. Parameter convergence to true values is analyzed without the persistence of excitation (PE) condition on the regressor with the dual layer low pass filter architecture. Inspired by the author’s previous work on switched linear systems, this letter extends the idea of memory augmentation for parameter learning in the inactive phase of the subsystem and intermittent initial excitation (IIE) condition to relax the PE condition to switched EL systems. The combination of memory augmentation and IIE conditions helps achieve the global exponential stability (GES) of the overall error of switched EL systems. A numerical simulation is presented to demonstrate the efficiency of the proposed algorithm.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3422-3427"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10852152/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种开关式欧拉-拉格朗日系统的在线自适应识别和控制方法,确保跟踪误差、滤波跟踪误差和参数估计误差对平衡点的全局指数稳定性。为每个子系统设计了参数估计器,以帮助在子系统的激活和非激活阶段进行参数学习。通过双层低通滤波器结构,分析了参数向真值的收敛情况,而不考虑调节器上的持续激励(PE)条件。受作者之前关于开关线性系统研究的启发,这封信将用于子系统非活动阶段参数学习的记忆增强和间歇性初始激励(IIE)条件的思想扩展到了开关 EL 系统,从而放宽了 PE 条件。记忆增强和 IIE 条件的结合有助于实现开关式 EL 系统整体误差的全局指数稳定性 (GES)。本文通过数值模拟证明了所提算法的效率。
Memory Augmented Adaptive Identification and Control of Switched Euler–Lagrange Systems
This letter proposes an online adaptive identification and control method for a switched Euler-Lagrange systems ensuring global exponential stability of the tracking error, filter tracking error and parameter estimation errors to the equilibrium point. Parameter estimators are designed for every subsystem to help with parameter learning during both the active and inactive phases of the subsystem. Parameter convergence to true values is analyzed without the persistence of excitation (PE) condition on the regressor with the dual layer low pass filter architecture. Inspired by the author’s previous work on switched linear systems, this letter extends the idea of memory augmentation for parameter learning in the inactive phase of the subsystem and intermittent initial excitation (IIE) condition to relax the PE condition to switched EL systems. The combination of memory augmentation and IIE conditions helps achieve the global exponential stability (GES) of the overall error of switched EL systems. A numerical simulation is presented to demonstrate the efficiency of the proposed algorithm.