伽罗瓦LCD码及混合字母码的lcp

IF 0.7 3区 数学 Q2 MATHEMATICS
Leijo Jose, Anuradha Sharma
{"title":"伽罗瓦LCD码及混合字母码的lcp","authors":"Leijo Jose,&nbsp;Anuradha Sharma","doi":"10.1016/j.disc.2025.114465","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span>R</span> be a finite commutative chain ring with the maximal ideal <span><math><mi>γ</mi><mi>R</mi></math></span> of nilpotency index <span><math><mi>e</mi><mo>≥</mo><mn>2</mn></math></span>, and let <span><math><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover><mo>=</mo><mi>R</mi><mo>/</mo><msup><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msup><mi>R</mi></math></span> for some positive integer <span><math><mi>s</mi><mo>&lt;</mo><mi>e</mi></math></span>. In this paper, we study and characterize Galois <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-LCD codes of an arbitrary block-length. We show that each weakly-free <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-linear code is monomially equivalent to a Galois <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-LCD code when <span><math><mo>|</mo><mi>R</mi><mo>/</mo><mi>γ</mi><mi>R</mi><mo>|</mo><mo>&gt;</mo><mn>4</mn></math></span>, while it is monomially equivalent to a Euclidean <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-LCD code when <span><math><mo>|</mo><mi>R</mi><mo>/</mo><mi>γ</mi><mi>R</mi><mo>|</mo><mo>&gt;</mo><mn>3</mn></math></span>. We also obtain enumeration formulae for all Euclidean and Hermitian <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-LCD codes of an arbitrary block-length. With the help of these enumeration formulae, we classify all Euclidean <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-LCD codes and <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>9</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-LCD codes of block-lengths <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and all Hermitian <span><math><mfrac><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>[</mo><mi>u</mi><mo>]</mo></mrow><mrow><mo>〈</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>〉</mo></mrow></mfrac><mspace></mspace><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-LCD codes of block-lengths <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> up to monomial equivalence. Apart from this, we study and characterize LCPs of <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-linear codes. We further study a direct sum masking scheme constructed using LCPs of <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-linear codes and obtain its security threshold against fault injection and side-channel attacks. We also discuss another application of LCPs of <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-linear codes in coding for the noiseless two-user adder channel.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114465"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Galois LCD codes and LCPs of codes over mixed alphabets\",\"authors\":\"Leijo Jose,&nbsp;Anuradha Sharma\",\"doi\":\"10.1016/j.disc.2025.114465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span>R</span> be a finite commutative chain ring with the maximal ideal <span><math><mi>γ</mi><mi>R</mi></math></span> of nilpotency index <span><math><mi>e</mi><mo>≥</mo><mn>2</mn></math></span>, and let <span><math><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover><mo>=</mo><mi>R</mi><mo>/</mo><msup><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msup><mi>R</mi></math></span> for some positive integer <span><math><mi>s</mi><mo>&lt;</mo><mi>e</mi></math></span>. In this paper, we study and characterize Galois <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-LCD codes of an arbitrary block-length. We show that each weakly-free <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-linear code is monomially equivalent to a Galois <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-LCD code when <span><math><mo>|</mo><mi>R</mi><mo>/</mo><mi>γ</mi><mi>R</mi><mo>|</mo><mo>&gt;</mo><mn>4</mn></math></span>, while it is monomially equivalent to a Euclidean <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-LCD code when <span><math><mo>|</mo><mi>R</mi><mo>/</mo><mi>γ</mi><mi>R</mi><mo>|</mo><mo>&gt;</mo><mn>3</mn></math></span>. We also obtain enumeration formulae for all Euclidean and Hermitian <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-LCD codes of an arbitrary block-length. With the help of these enumeration formulae, we classify all Euclidean <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-LCD codes and <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>9</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-LCD codes of block-lengths <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and all Hermitian <span><math><mfrac><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>[</mo><mi>u</mi><mo>]</mo></mrow><mrow><mo>〈</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>〉</mo></mrow></mfrac><mspace></mspace><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-LCD codes of block-lengths <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> up to monomial equivalence. Apart from this, we study and characterize LCPs of <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-linear codes. We further study a direct sum masking scheme constructed using LCPs of <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-linear codes and obtain its security threshold against fault injection and side-channel attacks. We also discuss another application of LCPs of <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-linear codes in coding for the noiseless two-user adder channel.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 8\",\"pages\":\"Article 114465\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25000731\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000731","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设R为幂零指数e≥2的最大理想γR的有限交换链环,且对于某正整数s<;e,设R ω =R/γsR。本文研究了任意块长度的伽罗瓦RR -LCD码,并对其进行了表征。我们证明了当|R/γR|>;4时,每个弱自由RR - α -线性码与伽罗瓦RR - α -LCD码是单等效的,而当|R/γR|>;3时,它与欧几里得RR - α -LCD码是单等效的。我们还得到了任意块长度的所有欧几里德码和厄米码的枚举公式。利用这些枚举公式,我们对块长度为(1,1)、(1,2)、(2,1)、(2,2)、(3,1)和(3,2)的所有欧氏Z4Z2-LCD码和Z9Z3-LCD码以及块长度为(1,1)、(1,2)、(2,1)和(2,2)的所有hermite F4[u] < u2 > F4- lcd码进行了分类。除此之外,我们还研究和表征了RR -线性编码的lcp。我们进一步研究了一种使用RR -线性码的lcp构造的直接和屏蔽方案,并获得了其针对故障注入和侧信道攻击的安全阈值。我们还讨论了RR -线性码的lcp在无噪声双用户加法器信道编码中的另一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Galois LCD codes and LCPs of codes over mixed alphabets
Let R be a finite commutative chain ring with the maximal ideal γR of nilpotency index e2, and let Rˇ=R/γsR for some positive integer s<e. In this paper, we study and characterize Galois RRˇ-LCD codes of an arbitrary block-length. We show that each weakly-free RRˇ-linear code is monomially equivalent to a Galois RRˇ-LCD code when |R/γR|>4, while it is monomially equivalent to a Euclidean RRˇ-LCD code when |R/γR|>3. We also obtain enumeration formulae for all Euclidean and Hermitian RRˇ-LCD codes of an arbitrary block-length. With the help of these enumeration formulae, we classify all Euclidean Z4Z2-LCD codes and Z9Z3-LCD codes of block-lengths (1,1), (1,2), (2,1), (2,2), (3,1) and (3,2) and all Hermitian F4[u]u2F4-LCD codes of block-lengths (1,1), (1,2), (2,1) and (2,2) up to monomial equivalence. Apart from this, we study and characterize LCPs of RRˇ-linear codes. We further study a direct sum masking scheme constructed using LCPs of RRˇ-linear codes and obtain its security threshold against fault injection and side-channel attacks. We also discuss another application of LCPs of RRˇ-linear codes in coding for the noiseless two-user adder channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信