基于物理的机器学习用于多光谱图像的tco层厚度预测和过程分析

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Alexandra Wörnhör, Saravana Kumar, Daniel Burkhardt, Jonas Schönauer, Sebastian Pingel, Ioan Voicu Vulcanean, Anamaria Steinmetz, Stefan Rein, Matthias Demant
{"title":"基于物理的机器学习用于多光谱图像的tco层厚度预测和过程分析","authors":"Alexandra Wörnhör,&nbsp;Saravana Kumar,&nbsp;Daniel Burkhardt,&nbsp;Jonas Schönauer,&nbsp;Sebastian Pingel,&nbsp;Ioan Voicu Vulcanean,&nbsp;Anamaria Steinmetz,&nbsp;Stefan Rein,&nbsp;Matthias Demant","doi":"10.1016/j.solmat.2025.113541","DOIUrl":null,"url":null,"abstract":"<div><div>We present a machine learning model for a robust and fast evaluation of thickness maps of Transparent Conducting Oxide (TCO) layers based on multichannel spectral images only. The model is applicable for the quality inspection of heterojunction solar cells with textured surfaces and an amorphous silicon layer stack beneath the TCO layer. Within our physics-informed approach, synthetic data are created online for model training by simulating reflection maps for given TCO thickness variations.</div><div>The developed method determines a full-scale TCO-thickness map in 1 s from inline measurable RGB image data. The spatially resolved analysis allows inline quality inspection of the thickness distributions. Additionally, the thickness profile at the edges is inspected with high spatial resolution in Silicon heterojunction solar cell precursors, where TCO edge exclusion at the rear side is required to avoid shunting. We demonstrate our approach by quantifying the completeness and masking area for narrow masks, which is a process optimization step for increasing cell efficiency. We derive sorting criteria for an early-stage process control regarding shunts and quantify the influence of the positioning accuracy of the mask on the short-circuit current.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"285 ","pages":"Article 113541"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-informed machine learning for TCO-layer thickness prediction and process analysis from multi-spectral images\",\"authors\":\"Alexandra Wörnhör,&nbsp;Saravana Kumar,&nbsp;Daniel Burkhardt,&nbsp;Jonas Schönauer,&nbsp;Sebastian Pingel,&nbsp;Ioan Voicu Vulcanean,&nbsp;Anamaria Steinmetz,&nbsp;Stefan Rein,&nbsp;Matthias Demant\",\"doi\":\"10.1016/j.solmat.2025.113541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a machine learning model for a robust and fast evaluation of thickness maps of Transparent Conducting Oxide (TCO) layers based on multichannel spectral images only. The model is applicable for the quality inspection of heterojunction solar cells with textured surfaces and an amorphous silicon layer stack beneath the TCO layer. Within our physics-informed approach, synthetic data are created online for model training by simulating reflection maps for given TCO thickness variations.</div><div>The developed method determines a full-scale TCO-thickness map in 1 s from inline measurable RGB image data. The spatially resolved analysis allows inline quality inspection of the thickness distributions. Additionally, the thickness profile at the edges is inspected with high spatial resolution in Silicon heterojunction solar cell precursors, where TCO edge exclusion at the rear side is required to avoid shunting. We demonstrate our approach by quantifying the completeness and masking area for narrow masks, which is a process optimization step for increasing cell efficiency. We derive sorting criteria for an early-stage process control regarding shunts and quantify the influence of the positioning accuracy of the mask on the short-circuit current.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"285 \",\"pages\":\"Article 113541\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024825001424\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825001424","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种机器学习模型,用于仅基于多通道光谱图像对透明导电氧化物(TCO)层的厚度图进行鲁棒和快速评估。该模型适用于具有纹理表面和TCO层下有非晶硅层堆积的异质结太阳能电池的质量检测。在我们的物理信息方法中,通过模拟给定TCO厚度变化的反射图,在线创建合成数据用于模型训练。该方法在1秒内从可测量的RGB图像数据中确定全尺寸tco -厚度图。空间分辨分析允许对厚度分布进行在线质量检查。此外,在硅异质结太阳能电池前驱体中,以高空间分辨率检查边缘的厚度分布,其中需要后方的TCO边缘排除以避免分流。我们通过量化窄掩模的完整性和掩模面积来证明我们的方法,这是提高细胞效率的过程优化步骤。我们推导了关于分流的早期过程控制的分类标准,并量化了掩模定位精度对短路电流的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics-informed machine learning for TCO-layer thickness prediction and process analysis from multi-spectral images
We present a machine learning model for a robust and fast evaluation of thickness maps of Transparent Conducting Oxide (TCO) layers based on multichannel spectral images only. The model is applicable for the quality inspection of heterojunction solar cells with textured surfaces and an amorphous silicon layer stack beneath the TCO layer. Within our physics-informed approach, synthetic data are created online for model training by simulating reflection maps for given TCO thickness variations.
The developed method determines a full-scale TCO-thickness map in 1 s from inline measurable RGB image data. The spatially resolved analysis allows inline quality inspection of the thickness distributions. Additionally, the thickness profile at the edges is inspected with high spatial resolution in Silicon heterojunction solar cell precursors, where TCO edge exclusion at the rear side is required to avoid shunting. We demonstrate our approach by quantifying the completeness and masking area for narrow masks, which is a process optimization step for increasing cell efficiency. We derive sorting criteria for an early-stage process control regarding shunts and quantify the influence of the positioning accuracy of the mask on the short-circuit current.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信