最佳潮流的机器学习技术综述

IF 11 1区 工程技术 Q1 ENERGY & FUELS
Hooman Khaloie, Mihály Dolányi, Jean-François Toubeau, François Vallée
{"title":"最佳潮流的机器学习技术综述","authors":"Hooman Khaloie,&nbsp;Mihály Dolányi,&nbsp;Jean-François Toubeau,&nbsp;François Vallée","doi":"10.1016/j.apenergy.2025.125637","DOIUrl":null,"url":null,"abstract":"<div><div>The Optimal Power Flow (OPF) problem is the cornerstone of power systems operations, providing generators’ most economical dispatch for power demands by fulfilling technical and physical constraints across the power network. To ensure safe and reliable operation of power systems, grid operators must steadily solve the nonconvex nonlinear OPF problem for immense power networks in (near) real-time, which poses tremendous computational challenges. The enormous amount of available data created by power systems digitalization and recent breakthroughs in machine learning have opened up new opportunities for grid operators to build shortcuts to predict or solve the OPF problem close to real-time. This survey overviews recent attempts at leveraging machine learning algorithms to solve the transmission-level OPF problem. On this basis, the groundwork is laid for commonly employed machine learning approaches leveraged to address the OPF problem. Subsequently, the frequently used performance evaluation metrics in learning-based OPFs are delineated to judge efficiency from diverse aspects (e.g., optimality in terms of the dispatched cost, feasibility concerning technical constraints, and computational efficiency) compared to conventional approaches. Next, the trend and progress of recently developed algorithms are discussed. Finally, the challenges and open problems at the interface of machine learning and OPF problems are highlighted.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"388 ","pages":"Article 125637"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of machine learning techniques for optimal power flow\",\"authors\":\"Hooman Khaloie,&nbsp;Mihály Dolányi,&nbsp;Jean-François Toubeau,&nbsp;François Vallée\",\"doi\":\"10.1016/j.apenergy.2025.125637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Optimal Power Flow (OPF) problem is the cornerstone of power systems operations, providing generators’ most economical dispatch for power demands by fulfilling technical and physical constraints across the power network. To ensure safe and reliable operation of power systems, grid operators must steadily solve the nonconvex nonlinear OPF problem for immense power networks in (near) real-time, which poses tremendous computational challenges. The enormous amount of available data created by power systems digitalization and recent breakthroughs in machine learning have opened up new opportunities for grid operators to build shortcuts to predict or solve the OPF problem close to real-time. This survey overviews recent attempts at leveraging machine learning algorithms to solve the transmission-level OPF problem. On this basis, the groundwork is laid for commonly employed machine learning approaches leveraged to address the OPF problem. Subsequently, the frequently used performance evaluation metrics in learning-based OPFs are delineated to judge efficiency from diverse aspects (e.g., optimality in terms of the dispatched cost, feasibility concerning technical constraints, and computational efficiency) compared to conventional approaches. Next, the trend and progress of recently developed algorithms are discussed. Finally, the challenges and open problems at the interface of machine learning and OPF problems are highlighted.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"388 \",\"pages\":\"Article 125637\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261925003678\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925003678","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

最优潮流(OPF)问题是电力系统运行的基础,通过满足整个电网的技术和物理限制,为发电机提供最经济的电力需求调度。为了保证电力系统的安全可靠运行,电网运营商必须稳定地(近)实时地求解大型电网的非凸非线性OPF问题,这给计算带来了巨大的挑战。电力系统数字化产生的大量可用数据和机器学习的最新突破为电网运营商提供了新的机会,可以建立快捷方式,以接近实时地预测或解决OPF问题。本调查概述了利用机器学习算法解决传输级OPF问题的最新尝试。在此基础上,为解决OPF问题的常用机器学习方法奠定了基础。随后,描述了基于学习的opf中常用的绩效评估指标,与传统方法相比,从不同方面(例如,调度成本方面的最优性,技术限制方面的可行性和计算效率)判断效率。其次,讨论了最近发展的算法的趋势和进展。最后,重点介绍了机器学习与OPF问题之间存在的挑战和开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of machine learning techniques for optimal power flow
The Optimal Power Flow (OPF) problem is the cornerstone of power systems operations, providing generators’ most economical dispatch for power demands by fulfilling technical and physical constraints across the power network. To ensure safe and reliable operation of power systems, grid operators must steadily solve the nonconvex nonlinear OPF problem for immense power networks in (near) real-time, which poses tremendous computational challenges. The enormous amount of available data created by power systems digitalization and recent breakthroughs in machine learning have opened up new opportunities for grid operators to build shortcuts to predict or solve the OPF problem close to real-time. This survey overviews recent attempts at leveraging machine learning algorithms to solve the transmission-level OPF problem. On this basis, the groundwork is laid for commonly employed machine learning approaches leveraged to address the OPF problem. Subsequently, the frequently used performance evaluation metrics in learning-based OPFs are delineated to judge efficiency from diverse aspects (e.g., optimality in terms of the dispatched cost, feasibility concerning technical constraints, and computational efficiency) compared to conventional approaches. Next, the trend and progress of recently developed algorithms are discussed. Finally, the challenges and open problems at the interface of machine learning and OPF problems are highlighted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信