PRE-ACT:使用可解释的人工智能预测放疗副作用,用于患者沟通和治疗修改

IF 2 Q3 HEALTH POLICY & SERVICES
Yuqin Liang , Paolo Bajardi , Guido Bologna , Francesco Bonchi , Gabriella Cortellessa , Andre Dekker , Francesca Fracasso , Manuela Joore , Nikos Paragios , Tim Rattay , Sofia Rivera , Cheryl Roumen , Johan van Soest , Alberto Traverso , Karolien Verhoeven , Iordanis Koutsopoulos , Christopher J. Talbot , PRE-ACT study consortium
{"title":"PRE-ACT:使用可解释的人工智能预测放疗副作用,用于患者沟通和治疗修改","authors":"Yuqin Liang ,&nbsp;Paolo Bajardi ,&nbsp;Guido Bologna ,&nbsp;Francesco Bonchi ,&nbsp;Gabriella Cortellessa ,&nbsp;Andre Dekker ,&nbsp;Francesca Fracasso ,&nbsp;Manuela Joore ,&nbsp;Nikos Paragios ,&nbsp;Tim Rattay ,&nbsp;Sofia Rivera ,&nbsp;Cheryl Roumen ,&nbsp;Johan van Soest ,&nbsp;Alberto Traverso ,&nbsp;Karolien Verhoeven ,&nbsp;Iordanis Koutsopoulos ,&nbsp;Christopher J. Talbot ,&nbsp;PRE-ACT study consortium","doi":"10.1016/j.jcpo.2024.100537","DOIUrl":null,"url":null,"abstract":"<div><div>PRE-ACT leverages Artificial Intelligence (AI) to predict radiotherapy side effects in breast cancer patients, integrating complex imaging and genomics data. This Horizon Europe project aims to enhance shared decision-making by providing explainable predictions and tailored interventions, advancing personalised radiotherapy and improving patient outcomes.</div></div>","PeriodicalId":38212,"journal":{"name":"Journal of Cancer Policy","volume":"43 ","pages":"Article 100537"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PRE-ACT: Prediction of Radiotherapy side Effects using explainable AI for patient Communication and Treatment modification\",\"authors\":\"Yuqin Liang ,&nbsp;Paolo Bajardi ,&nbsp;Guido Bologna ,&nbsp;Francesco Bonchi ,&nbsp;Gabriella Cortellessa ,&nbsp;Andre Dekker ,&nbsp;Francesca Fracasso ,&nbsp;Manuela Joore ,&nbsp;Nikos Paragios ,&nbsp;Tim Rattay ,&nbsp;Sofia Rivera ,&nbsp;Cheryl Roumen ,&nbsp;Johan van Soest ,&nbsp;Alberto Traverso ,&nbsp;Karolien Verhoeven ,&nbsp;Iordanis Koutsopoulos ,&nbsp;Christopher J. Talbot ,&nbsp;PRE-ACT study consortium\",\"doi\":\"10.1016/j.jcpo.2024.100537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>PRE-ACT leverages Artificial Intelligence (AI) to predict radiotherapy side effects in breast cancer patients, integrating complex imaging and genomics data. This Horizon Europe project aims to enhance shared decision-making by providing explainable predictions and tailored interventions, advancing personalised radiotherapy and improving patient outcomes.</div></div>\",\"PeriodicalId\":38212,\"journal\":{\"name\":\"Journal of Cancer Policy\",\"volume\":\"43 \",\"pages\":\"Article 100537\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cancer Policy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213538324000717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Policy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213538324000717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

PRE-ACT利用人工智能(AI)来预测乳腺癌患者的放疗副作用,整合复杂的成像和基因组学数据。“地平线欧洲”项目旨在通过提供可解释的预测和量身定制的干预措施,推进个性化放疗和改善患者预后,从而加强共同决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PRE-ACT: Prediction of Radiotherapy side Effects using explainable AI for patient Communication and Treatment modification
PRE-ACT leverages Artificial Intelligence (AI) to predict radiotherapy side effects in breast cancer patients, integrating complex imaging and genomics data. This Horizon Europe project aims to enhance shared decision-making by providing explainable predictions and tailored interventions, advancing personalised radiotherapy and improving patient outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cancer Policy
Journal of Cancer Policy Medicine-Health Policy
CiteScore
2.40
自引率
7.70%
发文量
47
审稿时长
65 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信