{"title":"关于Z[n3]的因子环","authors":"Tomasz Jędrzejak","doi":"10.1016/j.jnt.2025.01.022","DOIUrl":null,"url":null,"abstract":"<div><div>We give a description of the structure of factor rings of <span><math><mi>Z</mi><mrow><mo>[</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>]</mo></mrow></math></span> where (without loss of generality) <em>n</em> is a positive integer which is not a cube. For example, we prove that <span><math><mi>Z</mi><mrow><mo>[</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>]</mo></mrow><mo>/</mo><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>+</mo><mi>c</mi><mroot><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mroot><mo>)</mo></mrow></math></span> is isomorphic to the ring of integers modulo <span><math><mo>|</mo><mi>N</mi><mo>|</mo></math></span>, if <span><math><mi>gcd</mi><mo></mo><mrow><mo>(</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>a</mi><mi>c</mi><mo>,</mo><mi>N</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></math></span> where <span><math><mi>N</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>n</mi><msup><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mn>3</mn><mi>n</mi><mi>a</mi><mi>b</mi><mi>c</mi></math></span> is the norm of the generator. We also characterize the structure of these factor rings for others integers <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></math></span>. Finally, we describe <span><math><mi>Z</mi><mrow><mo>[</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>]</mo></mrow><mo>/</mo><mi>I</mi></math></span> for certain non-principal ideals <em>I</em>. We also present many corollaries regarding irreducible and prime elements in <span><math><mi>Z</mi><mrow><mo>[</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>]</mo></mrow></math></span> and give numerous examples.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"275 ","pages":"Pages 104-118"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the factor rings of Z[n3]\",\"authors\":\"Tomasz Jędrzejak\",\"doi\":\"10.1016/j.jnt.2025.01.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We give a description of the structure of factor rings of <span><math><mi>Z</mi><mrow><mo>[</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>]</mo></mrow></math></span> where (without loss of generality) <em>n</em> is a positive integer which is not a cube. For example, we prove that <span><math><mi>Z</mi><mrow><mo>[</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>]</mo></mrow><mo>/</mo><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>+</mo><mi>c</mi><mroot><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mroot><mo>)</mo></mrow></math></span> is isomorphic to the ring of integers modulo <span><math><mo>|</mo><mi>N</mi><mo>|</mo></math></span>, if <span><math><mi>gcd</mi><mo></mo><mrow><mo>(</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>a</mi><mi>c</mi><mo>,</mo><mi>N</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></math></span> where <span><math><mi>N</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>n</mi><msup><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mn>3</mn><mi>n</mi><mi>a</mi><mi>b</mi><mi>c</mi></math></span> is the norm of the generator. We also characterize the structure of these factor rings for others integers <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></math></span>. Finally, we describe <span><math><mi>Z</mi><mrow><mo>[</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>]</mo></mrow><mo>/</mo><mi>I</mi></math></span> for certain non-principal ideals <em>I</em>. We also present many corollaries regarding irreducible and prime elements in <span><math><mi>Z</mi><mrow><mo>[</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>]</mo></mrow></math></span> and give numerous examples.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"275 \",\"pages\":\"Pages 104-118\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25000575\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25000575","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We give a description of the structure of factor rings of where (without loss of generality) n is a positive integer which is not a cube. For example, we prove that is isomorphic to the ring of integers modulo , if where is the norm of the generator. We also characterize the structure of these factor rings for others integers . Finally, we describe for certain non-principal ideals I. We also present many corollaries regarding irreducible and prime elements in and give numerous examples.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.