关于Z[n3]的因子环

IF 0.6 3区 数学 Q3 MATHEMATICS
Tomasz Jędrzejak
{"title":"关于Z[n3]的因子环","authors":"Tomasz Jędrzejak","doi":"10.1016/j.jnt.2025.01.022","DOIUrl":null,"url":null,"abstract":"<div><div>We give a description of the structure of factor rings of <span><math><mi>Z</mi><mrow><mo>[</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>]</mo></mrow></math></span> where (without loss of generality) <em>n</em> is a positive integer which is not a cube. For example, we prove that <span><math><mi>Z</mi><mrow><mo>[</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>]</mo></mrow><mo>/</mo><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>+</mo><mi>c</mi><mroot><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mroot><mo>)</mo></mrow></math></span> is isomorphic to the ring of integers modulo <span><math><mo>|</mo><mi>N</mi><mo>|</mo></math></span>, if <span><math><mi>gcd</mi><mo>⁡</mo><mrow><mo>(</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>a</mi><mi>c</mi><mo>,</mo><mi>N</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></math></span> where <span><math><mi>N</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>n</mi><msup><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mn>3</mn><mi>n</mi><mi>a</mi><mi>b</mi><mi>c</mi></math></span> is the norm of the generator. We also characterize the structure of these factor rings for others integers <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></math></span>. Finally, we describe <span><math><mi>Z</mi><mrow><mo>[</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>]</mo></mrow><mo>/</mo><mi>I</mi></math></span> for certain non-principal ideals <em>I</em>. We also present many corollaries regarding irreducible and prime elements in <span><math><mi>Z</mi><mrow><mo>[</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>]</mo></mrow></math></span> and give numerous examples.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"275 ","pages":"Pages 104-118"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the factor rings of Z[n3]\",\"authors\":\"Tomasz Jędrzejak\",\"doi\":\"10.1016/j.jnt.2025.01.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We give a description of the structure of factor rings of <span><math><mi>Z</mi><mrow><mo>[</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>]</mo></mrow></math></span> where (without loss of generality) <em>n</em> is a positive integer which is not a cube. For example, we prove that <span><math><mi>Z</mi><mrow><mo>[</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>]</mo></mrow><mo>/</mo><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>+</mo><mi>c</mi><mroot><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mroot><mo>)</mo></mrow></math></span> is isomorphic to the ring of integers modulo <span><math><mo>|</mo><mi>N</mi><mo>|</mo></math></span>, if <span><math><mi>gcd</mi><mo>⁡</mo><mrow><mo>(</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>a</mi><mi>c</mi><mo>,</mo><mi>N</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></math></span> where <span><math><mi>N</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>n</mi><msup><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mn>3</mn><mi>n</mi><mi>a</mi><mi>b</mi><mi>c</mi></math></span> is the norm of the generator. We also characterize the structure of these factor rings for others integers <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></math></span>. Finally, we describe <span><math><mi>Z</mi><mrow><mo>[</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>]</mo></mrow><mo>/</mo><mi>I</mi></math></span> for certain non-principal ideals <em>I</em>. We also present many corollaries regarding irreducible and prime elements in <span><math><mi>Z</mi><mrow><mo>[</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>]</mo></mrow></math></span> and give numerous examples.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"275 \",\"pages\":\"Pages 104-118\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25000575\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25000575","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了Z[n3]的因子环的结构的描述,其中(不失一般性)n是一个正整数而不是立方体。例如,我们证明了Z[n3]/(a+bn3+cn23)同构于整数环模|N|,如果gcd (b2−ac,N)=1,其中N=a3+nb3+n2c3−3nabc是生成子的范数。我们还刻画了其他整数a,b,c的这些因子环的结构。最后,我们描述了Z[n3]/I对于某些非主理想I。我们也给出了Z[n3]中不可约素元素的许多推论,并给出了许多例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the factor rings of Z[n3]
We give a description of the structure of factor rings of Z[n3] where (without loss of generality) n is a positive integer which is not a cube. For example, we prove that Z[n3]/(a+bn3+cn23) is isomorphic to the ring of integers modulo |N|, if gcd(b2ac,N)=1 where N=a3+nb3+n2c33nabc is the norm of the generator. We also characterize the structure of these factor rings for others integers a,b,c. Finally, we describe Z[n3]/I for certain non-principal ideals I. We also present many corollaries regarding irreducible and prime elements in Z[n3] and give numerous examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信