一些低度极化 K3 曲面堆栈的皮卡尔积分群

IF 0.7 2区 数学 Q2 MATHEMATICS
Andrea Di Lorenzo
{"title":"一些低度极化 K3 曲面堆栈的皮卡尔积分群","authors":"Andrea Di Lorenzo","doi":"10.1016/j.jpaa.2025.107926","DOIUrl":null,"url":null,"abstract":"<div><div>We compute the integral Picard group of the stack <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn><mi>l</mi></mrow></msub></math></span> of polarized K3 surfaces with at most rational double points of degree <span><math><mn>2</mn><mi>l</mi><mo>=</mo><mn>4</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>8</mn></math></span>. We show that in this range the integral Picard group is torsion-free and that a basis is given by certain elliptic Noether-Lefschetz divisors together with the Hodge line bundle.</div><div>To achieve this result, we investigate certain stacks of complete intersections and their Picard groups by means of equivariant geometry.</div><div>In the end we compute an expression of the class of some Noether-Lefschetz divisors, restricted to an open substack of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn><mi>l</mi></mrow></msub></math></span>, in terms of the basis mentioned above.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107926"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral Picard group of some stacks of polarized K3 surfaces of low degree\",\"authors\":\"Andrea Di Lorenzo\",\"doi\":\"10.1016/j.jpaa.2025.107926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We compute the integral Picard group of the stack <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn><mi>l</mi></mrow></msub></math></span> of polarized K3 surfaces with at most rational double points of degree <span><math><mn>2</mn><mi>l</mi><mo>=</mo><mn>4</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>8</mn></math></span>. We show that in this range the integral Picard group is torsion-free and that a basis is given by certain elliptic Noether-Lefschetz divisors together with the Hodge line bundle.</div><div>To achieve this result, we investigate certain stacks of complete intersections and their Picard groups by means of equivariant geometry.</div><div>In the end we compute an expression of the class of some Noether-Lefschetz divisors, restricted to an open substack of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn><mi>l</mi></mrow></msub></math></span>, in terms of the basis mentioned above.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 6\",\"pages\":\"Article 107926\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925000659\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000659","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们计算了最多有理双点2l=4,6,8的极化K3曲面叠M2l的积分Picard群。我们证明了在这个范围内,积分Picard群是无扭转的,并且一个基是由某些椭圆Noether-Lefschetz因子和Hodge线束给出的。为了得到这一结果,我们利用等变几何的方法研究了若干完全交堆及其Picard群。最后,我们根据上述基计算了一类Noether-Lefschetz因子的表达式,这些因子被限制在M2l的开子堆上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral Picard group of some stacks of polarized K3 surfaces of low degree
We compute the integral Picard group of the stack M2l of polarized K3 surfaces with at most rational double points of degree 2l=4,6,8. We show that in this range the integral Picard group is torsion-free and that a basis is given by certain elliptic Noether-Lefschetz divisors together with the Hodge line bundle.
To achieve this result, we investigate certain stacks of complete intersections and their Picard groups by means of equivariant geometry.
In the end we compute an expression of the class of some Noether-Lefschetz divisors, restricted to an open substack of M2l, in terms of the basis mentioned above.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信