Christoph Parsch , Benjamin Wagner , Jayden E. Engert , Rawati Panjaitan , William F. Laurance , Craig R. Nitschke , Holger Kreft
{"title":"利用机器学习和细胞自动机预测新几内亚的森林砍伐和碳损失","authors":"Christoph Parsch , Benjamin Wagner , Jayden E. Engert , Rawati Panjaitan , William F. Laurance , Craig R. Nitschke , Holger Kreft","doi":"10.1016/j.scitotenv.2025.178864","DOIUrl":null,"url":null,"abstract":"<div><div>The island of New Guinea harbors some of the world's most biologically diverse and highly endemic tropical ecosystems. Nevertheless, progressing land-use change in the region threatens their integrity, which will adversely affect their biodiversity as well as carbon stocks and fluxes. Our objectives were to (1) compare deforestation drivers between Indonesian New Guinea and Papua New Guinea<strong>,</strong> (2) identify areas with a high risk of future deforestation under different development scenarios, and (3) evaluate the effects of potential deforestation scenarios on carbon pools. We integrated machine learning and cellular automata to model and forecast deforestation across New Guinea. We assessed the potential loss of irrecoverable carbon stocks for four deforestation scenarios ranging from 4.8 % (business-as-usual) to 28 % (high development scenario) forest loss between 2020 and 2040. Areas of high deforestation risk were consistently forecasted in lowland regions across the four deforestation scenarios. In Indonesian New Guinea, 75 % of deforestation was forecasted below ~380 m a.s.l., but ranged higher in Papua New Guinea (<750 m a.s.l.). Land change-induced carbon loss varied largely across the four scenarios and ranged between 156 and 918 Mt in Indonesian New Guinea and between 223 and 1082 Mt in Papua New Guinea, respectively. Our analysis reveals promising potential for integrating random forests and cellular automata models to forecast high-resolution deforestation over large spatial extents. Our models reveal the vulnerability of New Guinea's lowlands to future deforestation, emphasizing the need to protect key areas where deforestation conflicts with the conservation of carbon stocks, ecosystem functions, and biodiversity.</div></div><div><h3>Abstract in Bahasa Indonesia</h3><div>Pulau New Guinea merupakan rumah bagi beberapa ekosistem tropis yang paling beragam secara biologis dan sangat endemik di dunia. Namun demikian, perubahan penggunaan lahan yang terus terjadi di kawasan ini mengancam integritas kawasan tersebut, yang akan berdampak buruk terhadap keanekaragaman hayati serta persdiaan dan fluks karbon. Tujuan penelitian ini adalah (1) membandingkan penyebab deforestasi antara New Guinea dan Papua Nugini, (2) mengidentifikasi kawasan dengan risiko tinggi deforestasi di masa depan berdasarkan skenario pembangunan yang berbeda, dan (3) mengevaluasi dampak skenario deforestasi potensial terhadap sumber karbon. . Kami mengintegrasikan pembelajaran mesin dan automata seluler untuk memodelkan dan memperkirakan deforestasi di seluruh New Guinea. Kami menilai potensi hilangnya cadangan karbon yang tidak dapat dipulihkan untuk empat skenario deforestasi yang berkisar antara 4,8 % (skenario pembangunan biasa) hingga 28 % (skenario pembangunan tinggi) antara tahun 2020 dan 2040. Wilayah dengan risiko deforestasi tinggi secara konsisten diperkirakan berada di wilayah dataran rendah dalam empat skenario deforestasi. Di Papua Nugini, 75 % deforestasi diperkirakan berada di bawah ~380 m dpl, namun berkisar lebih tinggi di Papua Nugini (<750 m dpl). Hilangnya karbon yang disebabkan oleh perubahan lahan sangat bervariasi di keempat skenario dan berkisar antara 156 dan 918 Mt di Nugini, dan masing-masing antara 223 dan 1.082 Mt di Papua Nugini. Analisis kami mengungkapkan potensi yang menjanjikan untuk mengintegrasikan hutan acak dan model automata seluler untuk memperkirakan deforestasi resolusi tinggi pada wilayah spasial yang luas. Model kami mengungkap bahwa kerentanan dataran rendah New Guinea terhadap deforestasi di masa depan, menekankan perlunya melindungi wilayah-wilayah utama di mana deforestasi bertentangan dengan konservasi persediaan karbon, fungsi ekosistem, dan keanekaragaman hayati.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"970 ","pages":"Article 178864"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting deforestation and carbon loss across New Guinea using machine learning and cellular automata\",\"authors\":\"Christoph Parsch , Benjamin Wagner , Jayden E. Engert , Rawati Panjaitan , William F. Laurance , Craig R. Nitschke , Holger Kreft\",\"doi\":\"10.1016/j.scitotenv.2025.178864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The island of New Guinea harbors some of the world's most biologically diverse and highly endemic tropical ecosystems. Nevertheless, progressing land-use change in the region threatens their integrity, which will adversely affect their biodiversity as well as carbon stocks and fluxes. Our objectives were to (1) compare deforestation drivers between Indonesian New Guinea and Papua New Guinea<strong>,</strong> (2) identify areas with a high risk of future deforestation under different development scenarios, and (3) evaluate the effects of potential deforestation scenarios on carbon pools. We integrated machine learning and cellular automata to model and forecast deforestation across New Guinea. We assessed the potential loss of irrecoverable carbon stocks for four deforestation scenarios ranging from 4.8 % (business-as-usual) to 28 % (high development scenario) forest loss between 2020 and 2040. Areas of high deforestation risk were consistently forecasted in lowland regions across the four deforestation scenarios. In Indonesian New Guinea, 75 % of deforestation was forecasted below ~380 m a.s.l., but ranged higher in Papua New Guinea (<750 m a.s.l.). Land change-induced carbon loss varied largely across the four scenarios and ranged between 156 and 918 Mt in Indonesian New Guinea and between 223 and 1082 Mt in Papua New Guinea, respectively. Our analysis reveals promising potential for integrating random forests and cellular automata models to forecast high-resolution deforestation over large spatial extents. Our models reveal the vulnerability of New Guinea's lowlands to future deforestation, emphasizing the need to protect key areas where deforestation conflicts with the conservation of carbon stocks, ecosystem functions, and biodiversity.</div></div><div><h3>Abstract in Bahasa Indonesia</h3><div>Pulau New Guinea merupakan rumah bagi beberapa ekosistem tropis yang paling beragam secara biologis dan sangat endemik di dunia. Namun demikian, perubahan penggunaan lahan yang terus terjadi di kawasan ini mengancam integritas kawasan tersebut, yang akan berdampak buruk terhadap keanekaragaman hayati serta persdiaan dan fluks karbon. Tujuan penelitian ini adalah (1) membandingkan penyebab deforestasi antara New Guinea dan Papua Nugini, (2) mengidentifikasi kawasan dengan risiko tinggi deforestasi di masa depan berdasarkan skenario pembangunan yang berbeda, dan (3) mengevaluasi dampak skenario deforestasi potensial terhadap sumber karbon. . Kami mengintegrasikan pembelajaran mesin dan automata seluler untuk memodelkan dan memperkirakan deforestasi di seluruh New Guinea. Kami menilai potensi hilangnya cadangan karbon yang tidak dapat dipulihkan untuk empat skenario deforestasi yang berkisar antara 4,8 % (skenario pembangunan biasa) hingga 28 % (skenario pembangunan tinggi) antara tahun 2020 dan 2040. Wilayah dengan risiko deforestasi tinggi secara konsisten diperkirakan berada di wilayah dataran rendah dalam empat skenario deforestasi. Di Papua Nugini, 75 % deforestasi diperkirakan berada di bawah ~380 m dpl, namun berkisar lebih tinggi di Papua Nugini (<750 m dpl). Hilangnya karbon yang disebabkan oleh perubahan lahan sangat bervariasi di keempat skenario dan berkisar antara 156 dan 918 Mt di Nugini, dan masing-masing antara 223 dan 1.082 Mt di Papua Nugini. Analisis kami mengungkapkan potensi yang menjanjikan untuk mengintegrasikan hutan acak dan model automata seluler untuk memperkirakan deforestasi resolusi tinggi pada wilayah spasial yang luas. Model kami mengungkap bahwa kerentanan dataran rendah New Guinea terhadap deforestasi di masa depan, menekankan perlunya melindungi wilayah-wilayah utama di mana deforestasi bertentangan dengan konservasi persediaan karbon, fungsi ekosistem, dan keanekaragaman hayati.</div></div>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"970 \",\"pages\":\"Article 178864\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048969725004991\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725004991","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Forecasting deforestation and carbon loss across New Guinea using machine learning and cellular automata
The island of New Guinea harbors some of the world's most biologically diverse and highly endemic tropical ecosystems. Nevertheless, progressing land-use change in the region threatens their integrity, which will adversely affect their biodiversity as well as carbon stocks and fluxes. Our objectives were to (1) compare deforestation drivers between Indonesian New Guinea and Papua New Guinea, (2) identify areas with a high risk of future deforestation under different development scenarios, and (3) evaluate the effects of potential deforestation scenarios on carbon pools. We integrated machine learning and cellular automata to model and forecast deforestation across New Guinea. We assessed the potential loss of irrecoverable carbon stocks for four deforestation scenarios ranging from 4.8 % (business-as-usual) to 28 % (high development scenario) forest loss between 2020 and 2040. Areas of high deforestation risk were consistently forecasted in lowland regions across the four deforestation scenarios. In Indonesian New Guinea, 75 % of deforestation was forecasted below ~380 m a.s.l., but ranged higher in Papua New Guinea (<750 m a.s.l.). Land change-induced carbon loss varied largely across the four scenarios and ranged between 156 and 918 Mt in Indonesian New Guinea and between 223 and 1082 Mt in Papua New Guinea, respectively. Our analysis reveals promising potential for integrating random forests and cellular automata models to forecast high-resolution deforestation over large spatial extents. Our models reveal the vulnerability of New Guinea's lowlands to future deforestation, emphasizing the need to protect key areas where deforestation conflicts with the conservation of carbon stocks, ecosystem functions, and biodiversity.
Abstract in Bahasa Indonesia
Pulau New Guinea merupakan rumah bagi beberapa ekosistem tropis yang paling beragam secara biologis dan sangat endemik di dunia. Namun demikian, perubahan penggunaan lahan yang terus terjadi di kawasan ini mengancam integritas kawasan tersebut, yang akan berdampak buruk terhadap keanekaragaman hayati serta persdiaan dan fluks karbon. Tujuan penelitian ini adalah (1) membandingkan penyebab deforestasi antara New Guinea dan Papua Nugini, (2) mengidentifikasi kawasan dengan risiko tinggi deforestasi di masa depan berdasarkan skenario pembangunan yang berbeda, dan (3) mengevaluasi dampak skenario deforestasi potensial terhadap sumber karbon. . Kami mengintegrasikan pembelajaran mesin dan automata seluler untuk memodelkan dan memperkirakan deforestasi di seluruh New Guinea. Kami menilai potensi hilangnya cadangan karbon yang tidak dapat dipulihkan untuk empat skenario deforestasi yang berkisar antara 4,8 % (skenario pembangunan biasa) hingga 28 % (skenario pembangunan tinggi) antara tahun 2020 dan 2040. Wilayah dengan risiko deforestasi tinggi secara konsisten diperkirakan berada di wilayah dataran rendah dalam empat skenario deforestasi. Di Papua Nugini, 75 % deforestasi diperkirakan berada di bawah ~380 m dpl, namun berkisar lebih tinggi di Papua Nugini (<750 m dpl). Hilangnya karbon yang disebabkan oleh perubahan lahan sangat bervariasi di keempat skenario dan berkisar antara 156 dan 918 Mt di Nugini, dan masing-masing antara 223 dan 1.082 Mt di Papua Nugini. Analisis kami mengungkapkan potensi yang menjanjikan untuk mengintegrasikan hutan acak dan model automata seluler untuk memperkirakan deforestasi resolusi tinggi pada wilayah spasial yang luas. Model kami mengungkap bahwa kerentanan dataran rendah New Guinea terhadap deforestasi di masa depan, menekankan perlunya melindungi wilayah-wilayah utama di mana deforestasi bertentangan dengan konservasi persediaan karbon, fungsi ekosistem, dan keanekaragaman hayati.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.