基于柔性机架机构的可穿戴VR手套手指跟踪

Q1 Computer Science
Roshan Thilakarathna, Maroay Phlernjai
{"title":"基于柔性机架机构的可穿戴VR手套手指跟踪","authors":"Roshan Thilakarathna,&nbsp;Maroay Phlernjai","doi":"10.1016/j.vrih.2024.03.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>With the increasing prominence of hand and finger motion tracking in virtual reality (VR) applications and rehabilitation studies, data gloves have emerged as a prevalent solution. In this study, we developed an innovative, lightweight, and detachable data glove tailored for finger motion tracking in VR environments.</div></div><div><h3>Methods</h3><div>The glove design incorporates a potentiometer coupled with a flexible rack and pinion gear system, facilitating precise and natural hand gestures for interaction with VR applications. Initially, we calibrated the potentiometer to align with the actual finger bending angle, and verified the accuracy of angle measurements recorded by the data glove. To verify the precision and reliability of our data glove, we conducted repeatability testing for flexion (grip test) and extension (flat test), with 250 measurements each, across five users. We employed the Gage Repeatability and Reproducibility to analyze and interpret the repeatable data. Furthermore, we integrated the gloves into a SteamVR home environment using the OpenGlove auto-calibration tool.</div></div><div><h3>Conclusions</h3><div>The repeatability analysis revealed an aggregate error of 1.45 degrees in both the gripped and flat hand positions. This outcome was notably favorable when compared with the findings from assessments of nine alternative data gloves that employed similar protocols. In these experiments, users navigated and engaged with virtual objects, underlining the glove's exact tracking of finger motion. Furthermore, the proposed data glove exhibited a low response time of 17–34 ms and back-drive force of only 0.19 N. Additionally, according to a comfort evaluation using the Comfort Rating Scales, the proposed glove system is wearable, placing it at the WL1 level.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"7 1","pages":"Pages 1-25"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finger tracking for wearable VR glove using flexible rack mechanism\",\"authors\":\"Roshan Thilakarathna,&nbsp;Maroay Phlernjai\",\"doi\":\"10.1016/j.vrih.2024.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>With the increasing prominence of hand and finger motion tracking in virtual reality (VR) applications and rehabilitation studies, data gloves have emerged as a prevalent solution. In this study, we developed an innovative, lightweight, and detachable data glove tailored for finger motion tracking in VR environments.</div></div><div><h3>Methods</h3><div>The glove design incorporates a potentiometer coupled with a flexible rack and pinion gear system, facilitating precise and natural hand gestures for interaction with VR applications. Initially, we calibrated the potentiometer to align with the actual finger bending angle, and verified the accuracy of angle measurements recorded by the data glove. To verify the precision and reliability of our data glove, we conducted repeatability testing for flexion (grip test) and extension (flat test), with 250 measurements each, across five users. We employed the Gage Repeatability and Reproducibility to analyze and interpret the repeatable data. Furthermore, we integrated the gloves into a SteamVR home environment using the OpenGlove auto-calibration tool.</div></div><div><h3>Conclusions</h3><div>The repeatability analysis revealed an aggregate error of 1.45 degrees in both the gripped and flat hand positions. This outcome was notably favorable when compared with the findings from assessments of nine alternative data gloves that employed similar protocols. In these experiments, users navigated and engaged with virtual objects, underlining the glove's exact tracking of finger motion. Furthermore, the proposed data glove exhibited a low response time of 17–34 ms and back-drive force of only 0.19 N. Additionally, according to a comfort evaluation using the Comfort Rating Scales, the proposed glove system is wearable, placing it at the WL1 level.</div></div>\",\"PeriodicalId\":33538,\"journal\":{\"name\":\"Virtual Reality Intelligent Hardware\",\"volume\":\"7 1\",\"pages\":\"Pages 1-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virtual Reality Intelligent Hardware\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096579624000093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579624000093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

随着手和手指运动跟踪在虚拟现实(VR)应用和康复研究中的日益突出,数据手套已经成为一种流行的解决方案。在这项研究中,我们开发了一种创新的、轻量级的、可拆卸的数据手套,专为VR环境中的手指运动跟踪而设计。方法该手套设计结合了电位器和灵活的齿条和小齿轮系统,为VR应用交互提供了精确和自然的手势。首先,我们校准了电位器,使其与实际手指弯曲角度对齐,并验证了数据手套记录的角度测量的准确性。为了验证我们的数据手套的精度和可靠性,我们进行了屈折(握力测试)和伸直(平面测试)的重复性测试,在5个用户中分别进行了250次测量。我们采用测量重复性和再现性来分析和解释可重复的数据。此外,我们使用OpenGlove自动校准工具将手套集成到SteamVR家庭环境中。结论该方法的重复性分析结果表明,手握和手平位置的总误差均为1.45度。与采用类似方案的九种替代数据手套的评估结果相比,这一结果明显有利。在这些实验中,用户导航和参与虚拟物体,强调手套对手指运动的精确跟踪。此外,该数据手套的响应时间较低,为17-34 ms,反驱动力仅为0.19 n。此外,根据舒适度评定量表的舒适度评估,该数据手套系统是可穿戴的,属于WL1级别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finger tracking for wearable VR glove using flexible rack mechanism

Background

With the increasing prominence of hand and finger motion tracking in virtual reality (VR) applications and rehabilitation studies, data gloves have emerged as a prevalent solution. In this study, we developed an innovative, lightweight, and detachable data glove tailored for finger motion tracking in VR environments.

Methods

The glove design incorporates a potentiometer coupled with a flexible rack and pinion gear system, facilitating precise and natural hand gestures for interaction with VR applications. Initially, we calibrated the potentiometer to align with the actual finger bending angle, and verified the accuracy of angle measurements recorded by the data glove. To verify the precision and reliability of our data glove, we conducted repeatability testing for flexion (grip test) and extension (flat test), with 250 measurements each, across five users. We employed the Gage Repeatability and Reproducibility to analyze and interpret the repeatable data. Furthermore, we integrated the gloves into a SteamVR home environment using the OpenGlove auto-calibration tool.

Conclusions

The repeatability analysis revealed an aggregate error of 1.45 degrees in both the gripped and flat hand positions. This outcome was notably favorable when compared with the findings from assessments of nine alternative data gloves that employed similar protocols. In these experiments, users navigated and engaged with virtual objects, underlining the glove's exact tracking of finger motion. Furthermore, the proposed data glove exhibited a low response time of 17–34 ms and back-drive force of only 0.19 N. Additionally, according to a comfort evaluation using the Comfort Rating Scales, the proposed glove system is wearable, placing it at the WL1 level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信