{"title":"向量值Lipschitz函数空间中道加韦性质的刻画","authors":"Rubén Medina , Abraham Rueda Zoca","doi":"10.1016/j.jfa.2025.110896","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>M</em> be a metric space and <em>X</em> be a Banach space. In this paper we address several questions about the structure of <span><math><mi>F</mi><mo>(</mo><mi>M</mi><mo>)</mo><msub><mrow><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>π</mi></mrow></msub><mi>X</mi></math></span> and <span><math><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>M</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span>. Our results are the following:<ul><li><span>(1)</span><span><div>We prove that if <em>M</em> is a length metric space then <span><math><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>M</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> has the Daugavet property. As a consequence, if <em>M</em> is length we obtain that <span><math><mi>F</mi><mo>(</mo><mi>M</mi><mo>)</mo><msub><mrow><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>π</mi></mrow></msub><mi>X</mi></math></span> has the Daugavet property. This gives an affirmative answer to <span><span>[9, Question 1]</span></span> (also asked in <span><span>[16, Remark 3.8]</span></span>).</div></span></li><li><span>(2)</span><span><div>We prove that if <em>M</em> is a non-uniformly discrete metric space or an unbounded metric space then the norm of <span><math><mi>F</mi><mo>(</mo><mi>M</mi><mo>)</mo><msub><mrow><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>π</mi></mrow></msub><mi>X</mi></math></span> is octahedral, which solves <span><span>[4, Question 3.2 (1)]</span></span>.</div></span></li><li><span>(3)</span><span><div>We characterise all the Banach spaces <em>X</em> such that <span><math><mi>L</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> is octahedral for every Banach space <em>Y</em>, which solves a question by Johann Langemets.</div></span></li></ul></div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 1","pages":"Article 110896"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterisation of the Daugavet property in spaces of vector-valued Lipschitz functions\",\"authors\":\"Rubén Medina , Abraham Rueda Zoca\",\"doi\":\"10.1016/j.jfa.2025.110896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>M</em> be a metric space and <em>X</em> be a Banach space. In this paper we address several questions about the structure of <span><math><mi>F</mi><mo>(</mo><mi>M</mi><mo>)</mo><msub><mrow><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>π</mi></mrow></msub><mi>X</mi></math></span> and <span><math><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>M</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span>. Our results are the following:<ul><li><span>(1)</span><span><div>We prove that if <em>M</em> is a length metric space then <span><math><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>M</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> has the Daugavet property. As a consequence, if <em>M</em> is length we obtain that <span><math><mi>F</mi><mo>(</mo><mi>M</mi><mo>)</mo><msub><mrow><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>π</mi></mrow></msub><mi>X</mi></math></span> has the Daugavet property. This gives an affirmative answer to <span><span>[9, Question 1]</span></span> (also asked in <span><span>[16, Remark 3.8]</span></span>).</div></span></li><li><span>(2)</span><span><div>We prove that if <em>M</em> is a non-uniformly discrete metric space or an unbounded metric space then the norm of <span><math><mi>F</mi><mo>(</mo><mi>M</mi><mo>)</mo><msub><mrow><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>π</mi></mrow></msub><mi>X</mi></math></span> is octahedral, which solves <span><span>[4, Question 3.2 (1)]</span></span>.</div></span></li><li><span>(3)</span><span><div>We characterise all the Banach spaces <em>X</em> such that <span><math><mi>L</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> is octahedral for every Banach space <em>Y</em>, which solves a question by Johann Langemets.</div></span></li></ul></div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 1\",\"pages\":\"Article 110896\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625000783\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625000783","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A characterisation of the Daugavet property in spaces of vector-valued Lipschitz functions
Let M be a metric space and X be a Banach space. In this paper we address several questions about the structure of and . Our results are the following:
(1)
We prove that if M is a length metric space then has the Daugavet property. As a consequence, if M is length we obtain that has the Daugavet property. This gives an affirmative answer to [9, Question 1] (also asked in [16, Remark 3.8]).
(2)
We prove that if M is a non-uniformly discrete metric space or an unbounded metric space then the norm of is octahedral, which solves [4, Question 3.2 (1)].
(3)
We characterise all the Banach spaces X such that is octahedral for every Banach space Y, which solves a question by Johann Langemets.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis