向量值Lipschitz函数空间中道加韦性质的刻画

IF 1.7 2区 数学 Q1 MATHEMATICS
Rubén Medina , Abraham Rueda Zoca
{"title":"向量值Lipschitz函数空间中道加韦性质的刻画","authors":"Rubén Medina ,&nbsp;Abraham Rueda Zoca","doi":"10.1016/j.jfa.2025.110896","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>M</em> be a metric space and <em>X</em> be a Banach space. In this paper we address several questions about the structure of <span><math><mi>F</mi><mo>(</mo><mi>M</mi><mo>)</mo><msub><mrow><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>π</mi></mrow></msub><mi>X</mi></math></span> and <span><math><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>M</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span>. Our results are the following:<ul><li><span>(1)</span><span><div>We prove that if <em>M</em> is a length metric space then <span><math><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>M</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> has the Daugavet property. As a consequence, if <em>M</em> is length we obtain that <span><math><mi>F</mi><mo>(</mo><mi>M</mi><mo>)</mo><msub><mrow><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>π</mi></mrow></msub><mi>X</mi></math></span> has the Daugavet property. This gives an affirmative answer to <span><span>[9, Question 1]</span></span> (also asked in <span><span>[16, Remark 3.8]</span></span>).</div></span></li><li><span>(2)</span><span><div>We prove that if <em>M</em> is a non-uniformly discrete metric space or an unbounded metric space then the norm of <span><math><mi>F</mi><mo>(</mo><mi>M</mi><mo>)</mo><msub><mrow><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>π</mi></mrow></msub><mi>X</mi></math></span> is octahedral, which solves <span><span>[4, Question 3.2 (1)]</span></span>.</div></span></li><li><span>(3)</span><span><div>We characterise all the Banach spaces <em>X</em> such that <span><math><mi>L</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> is octahedral for every Banach space <em>Y</em>, which solves a question by Johann Langemets.</div></span></li></ul></div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 1","pages":"Article 110896"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterisation of the Daugavet property in spaces of vector-valued Lipschitz functions\",\"authors\":\"Rubén Medina ,&nbsp;Abraham Rueda Zoca\",\"doi\":\"10.1016/j.jfa.2025.110896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>M</em> be a metric space and <em>X</em> be a Banach space. In this paper we address several questions about the structure of <span><math><mi>F</mi><mo>(</mo><mi>M</mi><mo>)</mo><msub><mrow><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>π</mi></mrow></msub><mi>X</mi></math></span> and <span><math><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>M</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span>. Our results are the following:<ul><li><span>(1)</span><span><div>We prove that if <em>M</em> is a length metric space then <span><math><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>M</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> has the Daugavet property. As a consequence, if <em>M</em> is length we obtain that <span><math><mi>F</mi><mo>(</mo><mi>M</mi><mo>)</mo><msub><mrow><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>π</mi></mrow></msub><mi>X</mi></math></span> has the Daugavet property. This gives an affirmative answer to <span><span>[9, Question 1]</span></span> (also asked in <span><span>[16, Remark 3.8]</span></span>).</div></span></li><li><span>(2)</span><span><div>We prove that if <em>M</em> is a non-uniformly discrete metric space or an unbounded metric space then the norm of <span><math><mi>F</mi><mo>(</mo><mi>M</mi><mo>)</mo><msub><mrow><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>π</mi></mrow></msub><mi>X</mi></math></span> is octahedral, which solves <span><span>[4, Question 3.2 (1)]</span></span>.</div></span></li><li><span>(3)</span><span><div>We characterise all the Banach spaces <em>X</em> such that <span><math><mi>L</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> is octahedral for every Banach space <em>Y</em>, which solves a question by Johann Langemets.</div></span></li></ul></div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 1\",\"pages\":\"Article 110896\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625000783\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625000783","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设M是度规空间X是巴拿赫空间。本文讨论了F(M)⊗πX和Lip0(M,X)的结构问题。我们的结果如下:(1)证明了如果M是一个长度度量空间,那么Lip0(M,X)具有道格韦性质。因此,如果M是长度,我们得到F(M)⊗πX具有道格韦性质。这给了[9,问题1]一个肯定的答案(也在[16,注释3.8]中提出)。(2)我们证明如果M是一个非一致离散度量空间或无界度量空间,那么F(M)⊗π πX的范数是八面体,从而解决了[4,问题3.2(1)]。(3)我们刻画了所有的Banach空间X使得L(X,Y)对于每个Banach空间Y都是八面体,从而解决了john Langemets的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterisation of the Daugavet property in spaces of vector-valued Lipschitz functions
Let M be a metric space and X be a Banach space. In this paper we address several questions about the structure of F(M)ˆπX and Lip0(M,X). Our results are the following:
  • (1)
    We prove that if M is a length metric space then Lip0(M,X) has the Daugavet property. As a consequence, if M is length we obtain that F(M)ˆπX has the Daugavet property. This gives an affirmative answer to [9, Question 1] (also asked in [16, Remark 3.8]).
  • (2)
    We prove that if M is a non-uniformly discrete metric space or an unbounded metric space then the norm of F(M)ˆπX is octahedral, which solves [4, Question 3.2 (1)].
  • (3)
    We characterise all the Banach spaces X such that L(X,Y) is octahedral for every Banach space Y, which solves a question by Johann Langemets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信