{"title":"涉及理想幂次的梯度(co)同调模的渐近v数","authors":"Dipankar Ghosh, Siddhartha Pramanik","doi":"10.1016/j.jalgebra.2025.01.029","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>R</em> be a Noetherian <span><math><mi>N</mi></math></span>-graded ring. Let <em>L</em>, <em>M</em> and <em>N</em> be finitely generated graded <em>R</em>-modules with <span><math><mi>N</mi><mo>⊆</mo><mi>M</mi></math></span>. For a homogeneous ideal <em>I</em>, and for each fixed <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span>, we show the asymptotic linearity of v-numbers of the graded modules <span><math><msubsup><mrow><mi>Ext</mi></mrow><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mo>(</mo><mi>L</mi><mo>,</mo><msup><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>M</mi><mo>/</mo><msup><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>N</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>Tor</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>R</mi></mrow></msubsup><mo>(</mo><mi>L</mi><mo>,</mo><msup><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>M</mi><mo>/</mo><msup><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>N</mi><mo>)</mo></math></span> as functions of <em>n</em>. Moreover, under some conditions on <span><math><msubsup><mrow><mi>Ext</mi></mrow><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mo>(</mo><mi>L</mi><mo>,</mo><mi>M</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>Tor</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>R</mi></mrow></msubsup><mo>(</mo><mi>L</mi><mo>,</mo><mi>M</mi><mo>)</mo></math></span> respectively, we prove similar behaviour for v-numbers of <span><math><msubsup><mrow><mi>Ext</mi></mrow><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mo>(</mo><mi>L</mi><mo>,</mo><mi>M</mi><mo>/</mo><msup><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>N</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>Tor</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>R</mi></mrow></msubsup><mo>(</mo><mi>L</mi><mo>,</mo><mi>M</mi><mo>/</mo><msup><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>N</mi><mo>)</mo></math></span>. The last result is obtained by proving the asymptotic linearity of v-number of <span><math><mo>(</mo><mi>U</mi><mo>+</mo><msup><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>V</mi><mo>)</mo><mo>/</mo><msup><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>W</mi></math></span>, where <em>U</em>, <em>V</em> and <em>W</em> are graded submodules of a finitely generated graded <em>R</em>-module such that <span><math><mi>W</mi><mo>⊆</mo><mi>V</mi></math></span> and <span><math><mo>(</mo><mn>0</mn><msub><mrow><mo>:</mo></mrow><mrow><mi>U</mi></mrow></msub><mi>I</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"671 ","pages":"Pages 61-74"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic v-numbers of graded (co)homology modules involving powers of an ideal\",\"authors\":\"Dipankar Ghosh, Siddhartha Pramanik\",\"doi\":\"10.1016/j.jalgebra.2025.01.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>R</em> be a Noetherian <span><math><mi>N</mi></math></span>-graded ring. Let <em>L</em>, <em>M</em> and <em>N</em> be finitely generated graded <em>R</em>-modules with <span><math><mi>N</mi><mo>⊆</mo><mi>M</mi></math></span>. For a homogeneous ideal <em>I</em>, and for each fixed <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span>, we show the asymptotic linearity of v-numbers of the graded modules <span><math><msubsup><mrow><mi>Ext</mi></mrow><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mo>(</mo><mi>L</mi><mo>,</mo><msup><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>M</mi><mo>/</mo><msup><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>N</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>Tor</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>R</mi></mrow></msubsup><mo>(</mo><mi>L</mi><mo>,</mo><msup><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>M</mi><mo>/</mo><msup><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>N</mi><mo>)</mo></math></span> as functions of <em>n</em>. Moreover, under some conditions on <span><math><msubsup><mrow><mi>Ext</mi></mrow><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mo>(</mo><mi>L</mi><mo>,</mo><mi>M</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>Tor</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>R</mi></mrow></msubsup><mo>(</mo><mi>L</mi><mo>,</mo><mi>M</mi><mo>)</mo></math></span> respectively, we prove similar behaviour for v-numbers of <span><math><msubsup><mrow><mi>Ext</mi></mrow><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mo>(</mo><mi>L</mi><mo>,</mo><mi>M</mi><mo>/</mo><msup><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>N</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>Tor</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>R</mi></mrow></msubsup><mo>(</mo><mi>L</mi><mo>,</mo><mi>M</mi><mo>/</mo><msup><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>N</mi><mo>)</mo></math></span>. The last result is obtained by proving the asymptotic linearity of v-number of <span><math><mo>(</mo><mi>U</mi><mo>+</mo><msup><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>V</mi><mo>)</mo><mo>/</mo><msup><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>W</mi></math></span>, where <em>U</em>, <em>V</em> and <em>W</em> are graded submodules of a finitely generated graded <em>R</em>-module such that <span><math><mi>W</mi><mo>⊆</mo><mi>V</mi></math></span> and <span><math><mo>(</mo><mn>0</mn><msub><mrow><mo>:</mo></mrow><mrow><mi>U</mi></mrow></msub><mi>I</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"671 \",\"pages\":\"Pages 61-74\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325000845\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325000845","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotic v-numbers of graded (co)homology modules involving powers of an ideal
Let R be a Noetherian -graded ring. Let L, M and N be finitely generated graded R-modules with . For a homogeneous ideal I, and for each fixed , we show the asymptotic linearity of v-numbers of the graded modules and as functions of n. Moreover, under some conditions on and respectively, we prove similar behaviour for v-numbers of and . The last result is obtained by proving the asymptotic linearity of v-number of , where U, V and W are graded submodules of a finitely generated graded R-module such that and .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.