用于钒氧化还原液流电池的可持续纸基纤维素纳米晶浸渍柔性离子交换膜(IEM)

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Swarnima Mukherjee, Prasenjit Kayal, Suman Das, Mir Wasim Raja
{"title":"用于钒氧化还原液流电池的可持续纸基纤维素纳米晶浸渍柔性离子交换膜(IEM)","authors":"Swarnima Mukherjee,&nbsp;Prasenjit Kayal,&nbsp;Suman Das,&nbsp;Mir Wasim Raja","doi":"10.1016/j.materresbull.2025.113413","DOIUrl":null,"url":null,"abstract":"<div><div>Cellulosic paper is now considered as one of the most sustainable, abundant, low-cost, and flexible substrates that offers plenty of room to fabricate application-specific devices such as transistors, sensors, antennas, thermo-electrics, batteries, etc. Here, we demonstrate a facile industry-friendly approach to fabricate a flexible paper-based proton conducting membrane by impregnating cellulose nano-crystals (CNC) in a paper matrix with the help of polymeric binder poly vinylidene fluoride-co-hexafluoro propylene (PVDF-HFP) for application in Vanadium Redox Flow Batteries (VRFBs). The synergy between hydrophilic (CNC) and hydrophobic (PVDF-HFP) phases was found to facilitate water uptake capabilities (37% - 48%), enhance mechanical tension (40–52 MPa), demonstrate effective protonic conductivity (∼10<sup>–3</sup>Scm<sup>-1</sup>), thermal stability (&lt;300 °C) and chemical stability (in 3 M H<sub>2</sub>SO<sub>4</sub>) of the developed membrane. A double-decker fabrication machine was also assigned to obtain flexi-IEM in roll form. The physicochemical properties of the ion exchange membrane (IEM) are estimated in detail and duly compared with the commercially available membrane (Nafion).</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"188 ","pages":"Article 113413"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable paper based cellulose nano-crystal (CNC) impregnated flexible ion exchange membrane (IEM) for vanadium redox flow batteries (VRFBs)\",\"authors\":\"Swarnima Mukherjee,&nbsp;Prasenjit Kayal,&nbsp;Suman Das,&nbsp;Mir Wasim Raja\",\"doi\":\"10.1016/j.materresbull.2025.113413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cellulosic paper is now considered as one of the most sustainable, abundant, low-cost, and flexible substrates that offers plenty of room to fabricate application-specific devices such as transistors, sensors, antennas, thermo-electrics, batteries, etc. Here, we demonstrate a facile industry-friendly approach to fabricate a flexible paper-based proton conducting membrane by impregnating cellulose nano-crystals (CNC) in a paper matrix with the help of polymeric binder poly vinylidene fluoride-co-hexafluoro propylene (PVDF-HFP) for application in Vanadium Redox Flow Batteries (VRFBs). The synergy between hydrophilic (CNC) and hydrophobic (PVDF-HFP) phases was found to facilitate water uptake capabilities (37% - 48%), enhance mechanical tension (40–52 MPa), demonstrate effective protonic conductivity (∼10<sup>–3</sup>Scm<sup>-1</sup>), thermal stability (&lt;300 °C) and chemical stability (in 3 M H<sub>2</sub>SO<sub>4</sub>) of the developed membrane. A double-decker fabrication machine was also assigned to obtain flexi-IEM in roll form. The physicochemical properties of the ion exchange membrane (IEM) are estimated in detail and duly compared with the commercially available membrane (Nafion).</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"188 \",\"pages\":\"Article 113413\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825001217\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825001217","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纤维素纸现在被认为是最可持续、最丰富、最低成本和最灵活的基板之一,它为制造晶体管、传感器、天线、热电、电池等特定应用设备提供了充足的空间。在这里,我们展示了一种简单的工业友好的方法,通过在聚合物粘合剂聚偏氟乙烯-共六氟丙烯(PVDF-HFP)的帮助下,将纤维素纳米晶体(CNC)浸没在纸基体中来制造柔性纸基质子导电膜,用于钒氧化还原液流电池(VRFBs)。发现亲水性(CNC)和疏水性(PVDF-HFP)相之间的协同作用促进了膜的吸水能力(37% - 48%),提高了机械张力(40-52 MPa),表现出有效的质子电导率(~ 10 - 3cm -1),热稳定性(<300°C)和化学稳定性(在3m H2SO4中)。设计了一种双层加工机,实现了辊型柔性iem。对离子交换膜(IEM)的物理化学性质进行了详细的估计,并与市售膜(Nafion)进行了适当的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sustainable paper based cellulose nano-crystal (CNC) impregnated flexible ion exchange membrane (IEM) for vanadium redox flow batteries (VRFBs)

Sustainable paper based cellulose nano-crystal (CNC) impregnated flexible ion exchange membrane (IEM) for vanadium redox flow batteries (VRFBs)
Cellulosic paper is now considered as one of the most sustainable, abundant, low-cost, and flexible substrates that offers plenty of room to fabricate application-specific devices such as transistors, sensors, antennas, thermo-electrics, batteries, etc. Here, we demonstrate a facile industry-friendly approach to fabricate a flexible paper-based proton conducting membrane by impregnating cellulose nano-crystals (CNC) in a paper matrix with the help of polymeric binder poly vinylidene fluoride-co-hexafluoro propylene (PVDF-HFP) for application in Vanadium Redox Flow Batteries (VRFBs). The synergy between hydrophilic (CNC) and hydrophobic (PVDF-HFP) phases was found to facilitate water uptake capabilities (37% - 48%), enhance mechanical tension (40–52 MPa), demonstrate effective protonic conductivity (∼10–3Scm-1), thermal stability (<300 °C) and chemical stability (in 3 M H2SO4) of the developed membrane. A double-decker fabrication machine was also assigned to obtain flexi-IEM in roll form. The physicochemical properties of the ion exchange membrane (IEM) are estimated in detail and duly compared with the commercially available membrane (Nafion).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信