Fatimazahra Sayerh , Latifa Mouhir , Laila Saafadi , Ilham Nassri , Abdelmoula El Ouardi , Najia Ameur
{"title":"医院污水中病原微生物的分析:了解抗生素耐药性和环境健康风险的统计方法","authors":"Fatimazahra Sayerh , Latifa Mouhir , Laila Saafadi , Ilham Nassri , Abdelmoula El Ouardi , Najia Ameur","doi":"10.1016/j.enmm.2025.101059","DOIUrl":null,"url":null,"abstract":"<div><div>Antibiotic resistance is a significant public health issue in the fight against infectious diseases, and hospital effluent is a special category of liquid waste, hazardous because of its contagious and toxic characteristics. However, these effluents are becoming uncontrollable, and the problem of their discharge into the environment is becoming increasingly important, especially as hospital effluents are a source of antibiotic bacteria. This work aims to analyze hospital effluents from two prefectural hospitals in the southwest region of Morocco (Temara-Sale towns) by assessing the microbiological quality and diversity of antibiotic-resistant bacteria in these effluents collected via weekly spot sampling. Samples taken from both sites showed high loads of fecal indicator bacteria and pathogens, particularly total coliforms, with levels ranging from 10<sup>2</sup> and 7,5 × 10<sup>4</sup> UFC/100 ml, fecal coliforms (8,1 × 10<sup>6</sup> UFC/100 ml), <em>Escherichia coli</em> (5,1 × 10<sup>6</sup> UFC/100 ml), <em>intestinal enterococci</em> (8,1 × 10<sup>3</sup> UFC/100 ml), <em>Staphylococcus aureus</em> (6,6 × 10<sup>6</sup> UFC/100 ml) and <em>Pseudomonas aeruginosa</em> (7,9 × 10<sup>6</sup> UFC/100 ml). The study of antibiotic resistance in strains isolated from hospital effluent revealed that of the 75 isolates examined, <em>Escherichia coli</em> was the most commonly detected isolate in both hospitals, with a prevalence of 42 % at PHT Hospital and 47 % at PHS Hospital. It was followed by <em>Klebsiella pneumonia</em>, <em>Pseudomonas aeruginosa</em>, and <em>Staphylococcus aureus</em>, with respective prevalences of 29 %, 16 %, and 12 % at PHT Hospital, and 16 %, 22 % and 13 % at PHS Hospital. The results show varying resistance rates to different antimicrobials, with high levels of resistance observed with antibiotics belonging to the beta-lactam class. Characterization of the hospital effluents from the two hospitals studied showed that these effluents present health and environmental risks that qualify the hospital-environment interface as a place conducive to the transfer of resistance, thus necessitating the urgent development of specific treatment methods before discharge into the natural environment.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101059"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of pathogenic microorganisms in hospital effluents: A statistical approach to understanding antibiotic resistance and environmental health risks\",\"authors\":\"Fatimazahra Sayerh , Latifa Mouhir , Laila Saafadi , Ilham Nassri , Abdelmoula El Ouardi , Najia Ameur\",\"doi\":\"10.1016/j.enmm.2025.101059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Antibiotic resistance is a significant public health issue in the fight against infectious diseases, and hospital effluent is a special category of liquid waste, hazardous because of its contagious and toxic characteristics. However, these effluents are becoming uncontrollable, and the problem of their discharge into the environment is becoming increasingly important, especially as hospital effluents are a source of antibiotic bacteria. This work aims to analyze hospital effluents from two prefectural hospitals in the southwest region of Morocco (Temara-Sale towns) by assessing the microbiological quality and diversity of antibiotic-resistant bacteria in these effluents collected via weekly spot sampling. Samples taken from both sites showed high loads of fecal indicator bacteria and pathogens, particularly total coliforms, with levels ranging from 10<sup>2</sup> and 7,5 × 10<sup>4</sup> UFC/100 ml, fecal coliforms (8,1 × 10<sup>6</sup> UFC/100 ml), <em>Escherichia coli</em> (5,1 × 10<sup>6</sup> UFC/100 ml), <em>intestinal enterococci</em> (8,1 × 10<sup>3</sup> UFC/100 ml), <em>Staphylococcus aureus</em> (6,6 × 10<sup>6</sup> UFC/100 ml) and <em>Pseudomonas aeruginosa</em> (7,9 × 10<sup>6</sup> UFC/100 ml). The study of antibiotic resistance in strains isolated from hospital effluent revealed that of the 75 isolates examined, <em>Escherichia coli</em> was the most commonly detected isolate in both hospitals, with a prevalence of 42 % at PHT Hospital and 47 % at PHS Hospital. It was followed by <em>Klebsiella pneumonia</em>, <em>Pseudomonas aeruginosa</em>, and <em>Staphylococcus aureus</em>, with respective prevalences of 29 %, 16 %, and 12 % at PHT Hospital, and 16 %, 22 % and 13 % at PHS Hospital. The results show varying resistance rates to different antimicrobials, with high levels of resistance observed with antibiotics belonging to the beta-lactam class. Characterization of the hospital effluents from the two hospitals studied showed that these effluents present health and environmental risks that qualify the hospital-environment interface as a place conducive to the transfer of resistance, thus necessitating the urgent development of specific treatment methods before discharge into the natural environment.</div></div>\",\"PeriodicalId\":11716,\"journal\":{\"name\":\"Environmental Nanotechnology, Monitoring and Management\",\"volume\":\"23 \",\"pages\":\"Article 101059\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Nanotechnology, Monitoring and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215153225000200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Analysis of pathogenic microorganisms in hospital effluents: A statistical approach to understanding antibiotic resistance and environmental health risks
Antibiotic resistance is a significant public health issue in the fight against infectious diseases, and hospital effluent is a special category of liquid waste, hazardous because of its contagious and toxic characteristics. However, these effluents are becoming uncontrollable, and the problem of their discharge into the environment is becoming increasingly important, especially as hospital effluents are a source of antibiotic bacteria. This work aims to analyze hospital effluents from two prefectural hospitals in the southwest region of Morocco (Temara-Sale towns) by assessing the microbiological quality and diversity of antibiotic-resistant bacteria in these effluents collected via weekly spot sampling. Samples taken from both sites showed high loads of fecal indicator bacteria and pathogens, particularly total coliforms, with levels ranging from 102 and 7,5 × 104 UFC/100 ml, fecal coliforms (8,1 × 106 UFC/100 ml), Escherichia coli (5,1 × 106 UFC/100 ml), intestinal enterococci (8,1 × 103 UFC/100 ml), Staphylococcus aureus (6,6 × 106 UFC/100 ml) and Pseudomonas aeruginosa (7,9 × 106 UFC/100 ml). The study of antibiotic resistance in strains isolated from hospital effluent revealed that of the 75 isolates examined, Escherichia coli was the most commonly detected isolate in both hospitals, with a prevalence of 42 % at PHT Hospital and 47 % at PHS Hospital. It was followed by Klebsiella pneumonia, Pseudomonas aeruginosa, and Staphylococcus aureus, with respective prevalences of 29 %, 16 %, and 12 % at PHT Hospital, and 16 %, 22 % and 13 % at PHS Hospital. The results show varying resistance rates to different antimicrobials, with high levels of resistance observed with antibiotics belonging to the beta-lactam class. Characterization of the hospital effluents from the two hospitals studied showed that these effluents present health and environmental risks that qualify the hospital-environment interface as a place conducive to the transfer of resistance, thus necessitating the urgent development of specific treatment methods before discharge into the natural environment.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation