Simeng Chen , Guozhang Bao , Yanan Xu , Huixin Wang , Lingzhi Tian , Jinke Hu , Zhaoxing Wu , Kaino Yano.W
{"title":"冻融循环条件下吡虫啉和噻虫酮对黑麦幼苗联合毒性作用机理的评价","authors":"Simeng Chen , Guozhang Bao , Yanan Xu , Huixin Wang , Lingzhi Tian , Jinke Hu , Zhaoxing Wu , Kaino Yano.W","doi":"10.1016/j.jenvman.2025.124774","DOIUrl":null,"url":null,"abstract":"<div><div>Freeze-thaw (FT) cycles significantly stress crops in Northeast China, exacerbated by pesticide overuse, particularly affecting vulnerable seedlings during these periods. This study investigates the physiological responses of <em>Secale cereale</em> L. seedlings to the insecticide imidacloprid (IMI) and the fungicide triadimefon (T) under simulated FT conditions. Our findings reveal that both pesticides impair photosynthesis in FT environments, resulting in increased malondialdehyde (MDA) and relative conductivity (RC). Furthermore, exposure to IMI and T enhances the activities of superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), while decreasing reduced glutathione (GSH) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) levels. Notably, combined stress resulted in significant increases of 80.26%, 16.36%, and 87.7% in RC, SOD, and POD activities, respectively, alongside substantial decreases of 65.87%, 46.34%, 63.74%, and 63.78% in net photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and water-use efficiency (WUE) in rye seedlings. Molecular docking analyses indicate that IMI and T interact with the active sites of SOD, POD, and APX through hydrogen bonding, compromising membrane integrity and inducing oxidative stress. While <em>Secale cereale</em> L. seedlings exhibit some resistance to IMI and T, FT conditions reduce this resilience. Correlation analysis reveals significant interactions between FT and pesticide stress on seedling physiology, suggesting that the concurrent use of IMI and T should be minimized in FT-prone areas. This study provides new insights into the pathways and mechanisms underlying the combined toxicity of IMI and T, offering a basis for assessing their environmental impacts on crops in regions susceptible to freeze-thaw cycles.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"379 ","pages":"Article 124774"},"PeriodicalIF":8.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of the mechanism of combined toxicity of imidacloprid and triadimefon to Secale cereale L. seedlings under freeze-thaw cycle conditions\",\"authors\":\"Simeng Chen , Guozhang Bao , Yanan Xu , Huixin Wang , Lingzhi Tian , Jinke Hu , Zhaoxing Wu , Kaino Yano.W\",\"doi\":\"10.1016/j.jenvman.2025.124774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Freeze-thaw (FT) cycles significantly stress crops in Northeast China, exacerbated by pesticide overuse, particularly affecting vulnerable seedlings during these periods. This study investigates the physiological responses of <em>Secale cereale</em> L. seedlings to the insecticide imidacloprid (IMI) and the fungicide triadimefon (T) under simulated FT conditions. Our findings reveal that both pesticides impair photosynthesis in FT environments, resulting in increased malondialdehyde (MDA) and relative conductivity (RC). Furthermore, exposure to IMI and T enhances the activities of superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), while decreasing reduced glutathione (GSH) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) levels. Notably, combined stress resulted in significant increases of 80.26%, 16.36%, and 87.7% in RC, SOD, and POD activities, respectively, alongside substantial decreases of 65.87%, 46.34%, 63.74%, and 63.78% in net photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and water-use efficiency (WUE) in rye seedlings. Molecular docking analyses indicate that IMI and T interact with the active sites of SOD, POD, and APX through hydrogen bonding, compromising membrane integrity and inducing oxidative stress. While <em>Secale cereale</em> L. seedlings exhibit some resistance to IMI and T, FT conditions reduce this resilience. Correlation analysis reveals significant interactions between FT and pesticide stress on seedling physiology, suggesting that the concurrent use of IMI and T should be minimized in FT-prone areas. This study provides new insights into the pathways and mechanisms underlying the combined toxicity of IMI and T, offering a basis for assessing their environmental impacts on crops in regions susceptible to freeze-thaw cycles.</div></div>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":\"379 \",\"pages\":\"Article 124774\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301479725007509\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725007509","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Assessment of the mechanism of combined toxicity of imidacloprid and triadimefon to Secale cereale L. seedlings under freeze-thaw cycle conditions
Freeze-thaw (FT) cycles significantly stress crops in Northeast China, exacerbated by pesticide overuse, particularly affecting vulnerable seedlings during these periods. This study investigates the physiological responses of Secale cereale L. seedlings to the insecticide imidacloprid (IMI) and the fungicide triadimefon (T) under simulated FT conditions. Our findings reveal that both pesticides impair photosynthesis in FT environments, resulting in increased malondialdehyde (MDA) and relative conductivity (RC). Furthermore, exposure to IMI and T enhances the activities of superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), while decreasing reduced glutathione (GSH) and hydrogen peroxide (H2O2) levels. Notably, combined stress resulted in significant increases of 80.26%, 16.36%, and 87.7% in RC, SOD, and POD activities, respectively, alongside substantial decreases of 65.87%, 46.34%, 63.74%, and 63.78% in net photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and water-use efficiency (WUE) in rye seedlings. Molecular docking analyses indicate that IMI and T interact with the active sites of SOD, POD, and APX through hydrogen bonding, compromising membrane integrity and inducing oxidative stress. While Secale cereale L. seedlings exhibit some resistance to IMI and T, FT conditions reduce this resilience. Correlation analysis reveals significant interactions between FT and pesticide stress on seedling physiology, suggesting that the concurrent use of IMI and T should be minimized in FT-prone areas. This study provides new insights into the pathways and mechanisms underlying the combined toxicity of IMI and T, offering a basis for assessing their environmental impacts on crops in regions susceptible to freeze-thaw cycles.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.