挪威震旦藻类相关真菌的多样性以及次生代谢物在寄主特异性中的作用

IF 2.9 3区 生物学 Q2 MYCOLOGY
Mika H. Kirkhus , Andreas Frisch , Ann M. Evankow , Rakel Blaalid , Raffaele Zane , Mika Bendiksby , Marie L. Davey
{"title":"挪威震旦藻类相关真菌的多样性以及次生代谢物在寄主特异性中的作用","authors":"Mika H. Kirkhus ,&nbsp;Andreas Frisch ,&nbsp;Ann M. Evankow ,&nbsp;Rakel Blaalid ,&nbsp;Raffaele Zane ,&nbsp;Mika Bendiksby ,&nbsp;Marie L. Davey","doi":"10.1016/j.funbio.2025.101563","DOIUrl":null,"url":null,"abstract":"<div><div>The diversity and host relationships of lichen-inhabiting tremellalean fungi remain understudied, partly due to their asymptomatic yeast phase. This study employs ITS2 metabarcoding to investigate the diversity and colonization patterns of these fungi within 13 <em>Pertusaria</em> lichen species collected in Norway. We discovered a high prevalence, with tremellalean fungi present in 57 % of the examined specimens, representing 12 of the 13 species included, 10 of which were not previously recognized as hosts. Our findings suggest a broad host range for the presumed yeast phase of these fungi, though occurrences of the five most frequent OTUs appeared non-random across different host species. Additionally, negative-binomial general linear models indicated a negative correlation between the presence of tremellalean fungi and the occurrence of specific secondary metabolites, such as thiophaninic acid, fumarprotocetraric acid, and gyrophoric acid, in <em>Pertusaria</em> hosts. These results highlight previously undocumented genetic diversity within tremellalean fungi and suggest that host chemotype significantly influences colonization patterns. Our findings demonstrate a higher frequency of asymptomatic colonization than previously reported, emphasizing the need for further research into their ecological roles and interactions.</div></div>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"129 3","pages":"Article 101563"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diversity of tremellalean Pertusaria-associated fungi in Norway and the role of secondary metabolites in host specificity\",\"authors\":\"Mika H. Kirkhus ,&nbsp;Andreas Frisch ,&nbsp;Ann M. Evankow ,&nbsp;Rakel Blaalid ,&nbsp;Raffaele Zane ,&nbsp;Mika Bendiksby ,&nbsp;Marie L. Davey\",\"doi\":\"10.1016/j.funbio.2025.101563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The diversity and host relationships of lichen-inhabiting tremellalean fungi remain understudied, partly due to their asymptomatic yeast phase. This study employs ITS2 metabarcoding to investigate the diversity and colonization patterns of these fungi within 13 <em>Pertusaria</em> lichen species collected in Norway. We discovered a high prevalence, with tremellalean fungi present in 57 % of the examined specimens, representing 12 of the 13 species included, 10 of which were not previously recognized as hosts. Our findings suggest a broad host range for the presumed yeast phase of these fungi, though occurrences of the five most frequent OTUs appeared non-random across different host species. Additionally, negative-binomial general linear models indicated a negative correlation between the presence of tremellalean fungi and the occurrence of specific secondary metabolites, such as thiophaninic acid, fumarprotocetraric acid, and gyrophoric acid, in <em>Pertusaria</em> hosts. These results highlight previously undocumented genetic diversity within tremellalean fungi and suggest that host chemotype significantly influences colonization patterns. Our findings demonstrate a higher frequency of asymptomatic colonization than previously reported, emphasizing the need for further research into their ecological roles and interactions.</div></div>\",\"PeriodicalId\":12683,\"journal\":{\"name\":\"Fungal biology\",\"volume\":\"129 3\",\"pages\":\"Article 101563\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878614625000297\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878614625000297","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diversity of tremellalean Pertusaria-associated fungi in Norway and the role of secondary metabolites in host specificity
The diversity and host relationships of lichen-inhabiting tremellalean fungi remain understudied, partly due to their asymptomatic yeast phase. This study employs ITS2 metabarcoding to investigate the diversity and colonization patterns of these fungi within 13 Pertusaria lichen species collected in Norway. We discovered a high prevalence, with tremellalean fungi present in 57 % of the examined specimens, representing 12 of the 13 species included, 10 of which were not previously recognized as hosts. Our findings suggest a broad host range for the presumed yeast phase of these fungi, though occurrences of the five most frequent OTUs appeared non-random across different host species. Additionally, negative-binomial general linear models indicated a negative correlation between the presence of tremellalean fungi and the occurrence of specific secondary metabolites, such as thiophaninic acid, fumarprotocetraric acid, and gyrophoric acid, in Pertusaria hosts. These results highlight previously undocumented genetic diversity within tremellalean fungi and suggest that host chemotype significantly influences colonization patterns. Our findings demonstrate a higher frequency of asymptomatic colonization than previously reported, emphasizing the need for further research into their ecological roles and interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fungal biology
Fungal biology MYCOLOGY-
CiteScore
5.80
自引率
4.00%
发文量
80
审稿时长
49 days
期刊介绍: Fungal Biology publishes original contributions in all fields of basic and applied research involving fungi and fungus-like organisms (including oomycetes and slime moulds). Areas of investigation include biodeterioration, biotechnology, cell and developmental biology, ecology, evolution, genetics, geomycology, medical mycology, mutualistic interactions (including lichens and mycorrhizas), physiology, plant pathology, secondary metabolites, and taxonomy and systematics. Submissions on experimental methods are also welcomed. Priority is given to contributions likely to be of interest to a wide international audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信