Feng Qin , Lijia Chen , Ge Zhou , Qi Shi , Binbin Liu , Xin Liu
{"title":"采用热等静压法提高激光粉末床熔融多孔钽的抗压强度","authors":"Feng Qin , Lijia Chen , Ge Zhou , Qi Shi , Binbin Liu , Xin Liu","doi":"10.1016/j.addma.2025.104729","DOIUrl":null,"url":null,"abstract":"<div><div>As structure-function integrated materials, highly interconnected porous materials have many advantages such as load bearing, light weight, and mass transfer. The advancement of additive manufacturing technology has prompted increasing scholarly attention towards the unit cell structural design and specific strength enhancement of the porous material. This study proposes an innovative high-pressure heat treatment technique for the performance optimization of the triply periodic minimal surface (TPMS) porous tantalum (Ta) components fabricated by laser powder bed fusion. The experimental results demonstrate that the hot isostatic pressing (HIP) process at 850 ℃ facilitates closure of internal micropores and enhances compressive strength without compromising the plasticity of porous Ta components. However, due to the oxygen sensitivity of Ta at high temperature, the oxidation rate of Ta samples rapidly increases with temperature. During HIP at 1350 ℃, oxygen atoms invade the Ta matrix to form Ta<sub>2</sub>O<sub>5</sub>, with the oxides providing stress concentration locations and crack propagation paths, leading to brittle fracture of the 1350-HIP samples. In addition, the anisotropic compressive strength of the porous Ta was further investigated in this study, revealing a greater compressive strength along the horizontal direction compared to that along the building direction.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"102 ","pages":"Article 104729"},"PeriodicalIF":10.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved compressive strength of laser powder bed fused porous tantalum by hot isostatic pressing\",\"authors\":\"Feng Qin , Lijia Chen , Ge Zhou , Qi Shi , Binbin Liu , Xin Liu\",\"doi\":\"10.1016/j.addma.2025.104729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As structure-function integrated materials, highly interconnected porous materials have many advantages such as load bearing, light weight, and mass transfer. The advancement of additive manufacturing technology has prompted increasing scholarly attention towards the unit cell structural design and specific strength enhancement of the porous material. This study proposes an innovative high-pressure heat treatment technique for the performance optimization of the triply periodic minimal surface (TPMS) porous tantalum (Ta) components fabricated by laser powder bed fusion. The experimental results demonstrate that the hot isostatic pressing (HIP) process at 850 ℃ facilitates closure of internal micropores and enhances compressive strength without compromising the plasticity of porous Ta components. However, due to the oxygen sensitivity of Ta at high temperature, the oxidation rate of Ta samples rapidly increases with temperature. During HIP at 1350 ℃, oxygen atoms invade the Ta matrix to form Ta<sub>2</sub>O<sub>5</sub>, with the oxides providing stress concentration locations and crack propagation paths, leading to brittle fracture of the 1350-HIP samples. In addition, the anisotropic compressive strength of the porous Ta was further investigated in this study, revealing a greater compressive strength along the horizontal direction compared to that along the building direction.</div></div>\",\"PeriodicalId\":7172,\"journal\":{\"name\":\"Additive manufacturing\",\"volume\":\"102 \",\"pages\":\"Article 104729\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214860425000934\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425000934","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Improved compressive strength of laser powder bed fused porous tantalum by hot isostatic pressing
As structure-function integrated materials, highly interconnected porous materials have many advantages such as load bearing, light weight, and mass transfer. The advancement of additive manufacturing technology has prompted increasing scholarly attention towards the unit cell structural design and specific strength enhancement of the porous material. This study proposes an innovative high-pressure heat treatment technique for the performance optimization of the triply periodic minimal surface (TPMS) porous tantalum (Ta) components fabricated by laser powder bed fusion. The experimental results demonstrate that the hot isostatic pressing (HIP) process at 850 ℃ facilitates closure of internal micropores and enhances compressive strength without compromising the plasticity of porous Ta components. However, due to the oxygen sensitivity of Ta at high temperature, the oxidation rate of Ta samples rapidly increases with temperature. During HIP at 1350 ℃, oxygen atoms invade the Ta matrix to form Ta2O5, with the oxides providing stress concentration locations and crack propagation paths, leading to brittle fracture of the 1350-HIP samples. In addition, the anisotropic compressive strength of the porous Ta was further investigated in this study, revealing a greater compressive strength along the horizontal direction compared to that along the building direction.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.