抽象空间中分数阶微分方程反问题的近似

IF 6.8 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Santosh Ruhil , Muslim Malik , Kottakkaran Sooppy Nisar , Fahad Sameer Al Shammari
{"title":"抽象空间中分数阶微分方程反问题的近似","authors":"Santosh Ruhil ,&nbsp;Muslim Malik ,&nbsp;Kottakkaran Sooppy Nisar ,&nbsp;Fahad Sameer Al Shammari","doi":"10.1016/j.aej.2025.02.079","DOIUrl":null,"url":null,"abstract":"<div><div>This article focuses on approximating a fractional-order inverse problem (IP) for an abstract differential equation in a Hilbert space. The main tools to find out the results are fixed-point methods, the <span><math><mi>α</mi></math></span>-resolvent family, and optimal control (OC) theory. We have defined an optimal control problem corresponding to the original inverse problem, and then by using an approximate optimal control problem, we have proved that the sequence of solutions to this approximate optimal control problem will converge to the solution of our original inverse problem. Furthermore, the fractional Crank–Nicolson scheme and a matrix optimization algorithm are utilized to derive approximation results, ensuring the convergence of the proposed numerical method. Finally, an example is presented to illustrate and validate the theoretical findings.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"121 ","pages":"Pages 529-538"},"PeriodicalIF":6.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of inverse problems for fractional differential equations in abstract spaces\",\"authors\":\"Santosh Ruhil ,&nbsp;Muslim Malik ,&nbsp;Kottakkaran Sooppy Nisar ,&nbsp;Fahad Sameer Al Shammari\",\"doi\":\"10.1016/j.aej.2025.02.079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article focuses on approximating a fractional-order inverse problem (IP) for an abstract differential equation in a Hilbert space. The main tools to find out the results are fixed-point methods, the <span><math><mi>α</mi></math></span>-resolvent family, and optimal control (OC) theory. We have defined an optimal control problem corresponding to the original inverse problem, and then by using an approximate optimal control problem, we have proved that the sequence of solutions to this approximate optimal control problem will converge to the solution of our original inverse problem. Furthermore, the fractional Crank–Nicolson scheme and a matrix optimization algorithm are utilized to derive approximation results, ensuring the convergence of the proposed numerical method. Finally, an example is presented to illustrate and validate the theoretical findings.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"121 \",\"pages\":\"Pages 529-538\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016825002571\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825002571","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究Hilbert空间中抽象微分方程的分数阶反问题的近似问题。得到结果的主要工具是不动点法、α-解决族和最优控制理论。我们定义了一个与原逆问题对应的最优控制问题,然后利用一个近似最优控制问题,证明了该近似最优控制问题的解序列收敛于原逆问题的解。利用分数阶Crank-Nicolson格式和矩阵优化算法推导近似结果,保证了所提数值方法的收敛性。最后,通过一个算例对理论结果进行了说明和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation of inverse problems for fractional differential equations in abstract spaces
This article focuses on approximating a fractional-order inverse problem (IP) for an abstract differential equation in a Hilbert space. The main tools to find out the results are fixed-point methods, the α-resolvent family, and optimal control (OC) theory. We have defined an optimal control problem corresponding to the original inverse problem, and then by using an approximate optimal control problem, we have proved that the sequence of solutions to this approximate optimal control problem will converge to the solution of our original inverse problem. Furthermore, the fractional Crank–Nicolson scheme and a matrix optimization algorithm are utilized to derive approximation results, ensuring the convergence of the proposed numerical method. Finally, an example is presented to illustrate and validate the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信