Christopher L. Kirkland, Tim E. Johnson, Jonas Kaempf, Bruno V. Ribeiro, Andreas Zametzer, R. Hugh Smithies, Brad McDonald
{"title":"澳大利亚西部皮尔巴拉克拉通的古太古代撞击坑","authors":"Christopher L. Kirkland, Tim E. Johnson, Jonas Kaempf, Bruno V. Ribeiro, Andreas Zametzer, R. Hugh Smithies, Brad McDonald","doi":"10.1038/s41467-025-57558-3","DOIUrl":null,"url":null,"abstract":"<p>The role of meteorite impacts in the origin, modification, and destruction of crust during the first two billion years of Earth history (4.5–2.5 billion years ago; Ga) is disputed. Whereas some argue for a relatively minor contribution overall, others have proposed that individual giant impactors (>10–50 km diameter) can initiate subduction zones and deep mantle plumes, arguably triggering a chain of events that formed cratons, the ancient nuclei of the continents. The uncertainty is compounded by the seeming absence of impact structures older than 2.23 Ga, such that the evidence for the terrestrial impact flux in the Hadean and Archaean eons is circumstantial. Here, we report the discovery of shatter cones in a complex, dominantly metasedimentary layer, the Antarctic Creek Member (ACM), in the centre of the East Pilbara Terrane, Western Australia, which provide unequivocal evidence for a hypervelocity meteorite impact. The shocked rocks of the crater floor are overlain by (unshocked) carbonate breccias and pillow lavas, stratigraphically constraining the age of the impact to 3.47 Ga and confirming discovery of the only Archaean crater known thus far.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"38 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Paleoarchaean impact crater in the Pilbara Craton, Western Australia\",\"authors\":\"Christopher L. Kirkland, Tim E. Johnson, Jonas Kaempf, Bruno V. Ribeiro, Andreas Zametzer, R. Hugh Smithies, Brad McDonald\",\"doi\":\"10.1038/s41467-025-57558-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The role of meteorite impacts in the origin, modification, and destruction of crust during the first two billion years of Earth history (4.5–2.5 billion years ago; Ga) is disputed. Whereas some argue for a relatively minor contribution overall, others have proposed that individual giant impactors (>10–50 km diameter) can initiate subduction zones and deep mantle plumes, arguably triggering a chain of events that formed cratons, the ancient nuclei of the continents. The uncertainty is compounded by the seeming absence of impact structures older than 2.23 Ga, such that the evidence for the terrestrial impact flux in the Hadean and Archaean eons is circumstantial. Here, we report the discovery of shatter cones in a complex, dominantly metasedimentary layer, the Antarctic Creek Member (ACM), in the centre of the East Pilbara Terrane, Western Australia, which provide unequivocal evidence for a hypervelocity meteorite impact. The shocked rocks of the crater floor are overlain by (unshocked) carbonate breccias and pillow lavas, stratigraphically constraining the age of the impact to 3.47 Ga and confirming discovery of the only Archaean crater known thus far.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57558-3\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57558-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A Paleoarchaean impact crater in the Pilbara Craton, Western Australia
The role of meteorite impacts in the origin, modification, and destruction of crust during the first two billion years of Earth history (4.5–2.5 billion years ago; Ga) is disputed. Whereas some argue for a relatively minor contribution overall, others have proposed that individual giant impactors (>10–50 km diameter) can initiate subduction zones and deep mantle plumes, arguably triggering a chain of events that formed cratons, the ancient nuclei of the continents. The uncertainty is compounded by the seeming absence of impact structures older than 2.23 Ga, such that the evidence for the terrestrial impact flux in the Hadean and Archaean eons is circumstantial. Here, we report the discovery of shatter cones in a complex, dominantly metasedimentary layer, the Antarctic Creek Member (ACM), in the centre of the East Pilbara Terrane, Western Australia, which provide unequivocal evidence for a hypervelocity meteorite impact. The shocked rocks of the crater floor are overlain by (unshocked) carbonate breccias and pillow lavas, stratigraphically constraining the age of the impact to 3.47 Ga and confirming discovery of the only Archaean crater known thus far.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.