卤化铯铋量子点中连接依赖的激子-声子耦合

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-03-06 DOI:10.1021/acsnano.4c18414
Beiye C. Li, Hugh Cairney, Yu Jin, Jinsoo Park, Siddhartha Sohoni, Lawson T. Lloyd, Yuzi Liu, Justin E. Jureller, Young Jay Ryu, Stella Chariton, Vitali B. Prakapenka, Richard D. Schaller, Giulia Galli, Gregory S. Engel
{"title":"卤化铯铋量子点中连接依赖的激子-声子耦合","authors":"Beiye C. Li, Hugh Cairney, Yu Jin, Jinsoo Park, Siddhartha Sohoni, Lawson T. Lloyd, Yuzi Liu, Justin E. Jureller, Young Jay Ryu, Stella Chariton, Vitali B. Prakapenka, Richard D. Schaller, Giulia Galli, Gregory S. Engel","doi":"10.1021/acsnano.4c18414","DOIUrl":null,"url":null,"abstract":"Metal halide octahedra form the fundamental functional building blocks of metal halide perovskites, dictating their structures, optical properties, electronic structures, and dynamics. In this study, we show that the connectivity of bismuth halide octahedra in Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> and Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> quantum dots (QDs) changes with different halide elements. We use first-principles calculations to reveal the key role of the connectivity of bismuth halide octahedra on the wave function symmetry, Huang–Rhys factor, and exciton–phonon interaction strength. Following QD synthesis via a ligand-mediated transport method, the effect of connectivity is verified with transient absorption spectroscopy, where we contrast Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> and Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> QD exciton dynamics. In photoexcited Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> QDs, phonons related to the vibrational motions of face-sharing [BiI<sub>6</sub>]<sup>3–</sup> bioctahedra couple strongly to the electronic state and drive rapid carrier relaxation. Equivalent signals are not observed for photoexcited Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> QDs, implying a lack of phonon involvement in band-edge absorption and subsequent exciton relaxation. Our findings suggest that structural engineering can effectively tune the exciton–phonon coupling and therefore influence exciton relaxation and recombination in perovskite nanomaterials.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"8 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connectivity-Dependent Exciton–Phonon Coupling in Cesium Bismuth Halide Quantum Dots\",\"authors\":\"Beiye C. Li, Hugh Cairney, Yu Jin, Jinsoo Park, Siddhartha Sohoni, Lawson T. Lloyd, Yuzi Liu, Justin E. Jureller, Young Jay Ryu, Stella Chariton, Vitali B. Prakapenka, Richard D. Schaller, Giulia Galli, Gregory S. Engel\",\"doi\":\"10.1021/acsnano.4c18414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal halide octahedra form the fundamental functional building blocks of metal halide perovskites, dictating their structures, optical properties, electronic structures, and dynamics. In this study, we show that the connectivity of bismuth halide octahedra in Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> and Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> quantum dots (QDs) changes with different halide elements. We use first-principles calculations to reveal the key role of the connectivity of bismuth halide octahedra on the wave function symmetry, Huang–Rhys factor, and exciton–phonon interaction strength. Following QD synthesis via a ligand-mediated transport method, the effect of connectivity is verified with transient absorption spectroscopy, where we contrast Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> and Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> QD exciton dynamics. In photoexcited Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> QDs, phonons related to the vibrational motions of face-sharing [BiI<sub>6</sub>]<sup>3–</sup> bioctahedra couple strongly to the electronic state and drive rapid carrier relaxation. Equivalent signals are not observed for photoexcited Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> QDs, implying a lack of phonon involvement in band-edge absorption and subsequent exciton relaxation. Our findings suggest that structural engineering can effectively tune the exciton–phonon coupling and therefore influence exciton relaxation and recombination in perovskite nanomaterials.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c18414\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18414","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属卤化物八面体构成了金属卤化物钙钛矿的基本功能组成部分,决定了它们的结构、光学性质、电子结构和动力学。在本研究中,我们证明了Cs3Bi2Br9和Cs3Bi2I9量子点(QDs)中卤化铋八面体的连通性随卤化元素的不同而变化。我们利用第一性原理计算揭示了卤化铋八面体的连通性对波函数对称性、Huang-Rhys因子和激子-声子相互作用强度的关键作用。通过配体介导输运法合成QD后,利用瞬态吸收光谱验证了连通性的影响,对比了Cs3Bi2Br9和Cs3Bi2I9的QD激子动力学。在光激发Cs3Bi2I9量子点中,与面共享[BiI6]3 -生物八面体的振动运动相关的声子与电子态强烈耦合并驱动快速载流子弛化。光激发的Cs3Bi2Br9量子点没有观察到等效信号,这意味着在带边吸收和随后的激子弛豫中缺乏声子参与。我们的研究结果表明,结构工程可以有效地调节钙钛矿纳米材料中的激子-声子耦合,从而影响激子弛豫和重组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Connectivity-Dependent Exciton–Phonon Coupling in Cesium Bismuth Halide Quantum Dots

Connectivity-Dependent Exciton–Phonon Coupling in Cesium Bismuth Halide Quantum Dots
Metal halide octahedra form the fundamental functional building blocks of metal halide perovskites, dictating their structures, optical properties, electronic structures, and dynamics. In this study, we show that the connectivity of bismuth halide octahedra in Cs3Bi2Br9 and Cs3Bi2I9 quantum dots (QDs) changes with different halide elements. We use first-principles calculations to reveal the key role of the connectivity of bismuth halide octahedra on the wave function symmetry, Huang–Rhys factor, and exciton–phonon interaction strength. Following QD synthesis via a ligand-mediated transport method, the effect of connectivity is verified with transient absorption spectroscopy, where we contrast Cs3Bi2Br9 and Cs3Bi2I9 QD exciton dynamics. In photoexcited Cs3Bi2I9 QDs, phonons related to the vibrational motions of face-sharing [BiI6]3– bioctahedra couple strongly to the electronic state and drive rapid carrier relaxation. Equivalent signals are not observed for photoexcited Cs3Bi2Br9 QDs, implying a lack of phonon involvement in band-edge absorption and subsequent exciton relaxation. Our findings suggest that structural engineering can effectively tune the exciton–phonon coupling and therefore influence exciton relaxation and recombination in perovskite nanomaterials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信