氢氧化水捕获在荷兰型氧化铱实现高效的质子交换膜水电解

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhaoyan Luo, Yinnan Qian, Zijie Yang, Lei Zhang, Qianling Zhang, Chuanxin He, Xiangzhong Ren
{"title":"氢氧化水捕获在荷兰型氧化铱实现高效的质子交换膜水电解","authors":"Zhaoyan Luo,&nbsp;Yinnan Qian,&nbsp;Zijie Yang,&nbsp;Lei Zhang,&nbsp;Qianling Zhang,&nbsp;Chuanxin He,&nbsp;Xiangzhong Ren","doi":"10.1002/adfm.202500044","DOIUrl":null,"url":null,"abstract":"<p>The development of highly active iridium oxides with excellent stability in acidic environments and significantly reduced Ir content is crucial for advancing competitive proton exchange membrane water electrolyzer (PEMWE) technologies. In this study, an intrinsically active acid-stable low-iridium (Ir/IrO<sub>x</sub>(OH)<sub>y</sub>·(H<sub>2</sub>O)<sub>n</sub>) OER electrocatalyst via an alkali-assisted ethylene glycol reduction method is designed. The Ir/IrO<sub>x</sub>(OH)<sub>y</sub>·(H<sub>2</sub>O)<sub>n</sub> shows a hollandite-like structure with abundant edge-sharing IrO<sub>6</sub> octahedra that accommodates structural water and OH ligands in its tunnels. In situ/operando spectroscopies demonstrate that lattice water (or OH ligands)–mediated oxygen exchange bypasses key rate-limiting steps in the OER process, including oxygen–oxygen bond formation in the adsorbate evolution mechanism (AEM) and deprotonation in the lattice oxygen mechanism (LOM), which typically hinder OER efficiency. Moreover, the interfacial OH ligands are shown to accelerate the deprotonation of OER intermediates, thereby enhancing the kinetics of the hydrogen evolution reaction (HER). The resulting Ir/IrO<sub>x</sub>(OH)<sub>y</sub>·(H<sub>2</sub>O)<sub>n</sub> catalyst achieves a lower overpotential of 1.79 V and exhibits high durability, sustaining 1200 h at 1 A cm<sup>−2</sup> under industrial conditions. These findings highlight the potential of this catalyst for high-performance, durable PEMWE systems.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 25","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water-Hydroxide Trapping in Hollandite-Type Iridium Oxide Enables Efficient Proton Exchange Membrane Water Electrolysis\",\"authors\":\"Zhaoyan Luo,&nbsp;Yinnan Qian,&nbsp;Zijie Yang,&nbsp;Lei Zhang,&nbsp;Qianling Zhang,&nbsp;Chuanxin He,&nbsp;Xiangzhong Ren\",\"doi\":\"10.1002/adfm.202500044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of highly active iridium oxides with excellent stability in acidic environments and significantly reduced Ir content is crucial for advancing competitive proton exchange membrane water electrolyzer (PEMWE) technologies. In this study, an intrinsically active acid-stable low-iridium (Ir/IrO<sub>x</sub>(OH)<sub>y</sub>·(H<sub>2</sub>O)<sub>n</sub>) OER electrocatalyst via an alkali-assisted ethylene glycol reduction method is designed. The Ir/IrO<sub>x</sub>(OH)<sub>y</sub>·(H<sub>2</sub>O)<sub>n</sub> shows a hollandite-like structure with abundant edge-sharing IrO<sub>6</sub> octahedra that accommodates structural water and OH ligands in its tunnels. In situ/operando spectroscopies demonstrate that lattice water (or OH ligands)–mediated oxygen exchange bypasses key rate-limiting steps in the OER process, including oxygen–oxygen bond formation in the adsorbate evolution mechanism (AEM) and deprotonation in the lattice oxygen mechanism (LOM), which typically hinder OER efficiency. Moreover, the interfacial OH ligands are shown to accelerate the deprotonation of OER intermediates, thereby enhancing the kinetics of the hydrogen evolution reaction (HER). The resulting Ir/IrO<sub>x</sub>(OH)<sub>y</sub>·(H<sub>2</sub>O)<sub>n</sub> catalyst achieves a lower overpotential of 1.79 V and exhibits high durability, sustaining 1200 h at 1 A cm<sup>−2</sup> under industrial conditions. These findings highlight the potential of this catalyst for high-performance, durable PEMWE systems.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 25\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202500044\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202500044","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发在酸性环境中具有优异稳定性和显著降低Ir含量的高活性铱氧化物对于推进竞争性质子交换膜水电解(PEMWE)技术至关重要。在本研究中,通过碱辅助乙二醇还原法设计了一种本质活性的酸稳定低铱(Ir/IrOx(OH)y·(H2O)n) OER电催化剂。Ir/IrOx(OH)y·(H2O)n具有丰富的边共享IrO6八面体,其隧道中容纳结构水和OH配体。原位/operando光谱表明,晶格水(或OH配体)介导的氧交换绕过了OER过程中的关键限速步骤,包括吸附物演化机制(AEM)中的氧键形成和晶格氧机制(LOM)中的去质子化,这通常会阻碍OER效率。此外,界面羟基配体可以加速OER中间体的去质子化,从而增强析氢反应(HER)动力学。得到的Ir/IrOx(OH)y·(H2O)n催化剂的过电位较低,为1.79 V,并且具有较高的耐久性,在工业条件下在1 a cm−2下可维持1200小时。这些发现突出了这种催化剂在高性能、耐用的PEMWE系统中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Water-Hydroxide Trapping in Hollandite-Type Iridium Oxide Enables Efficient Proton Exchange Membrane Water Electrolysis

Water-Hydroxide Trapping in Hollandite-Type Iridium Oxide Enables Efficient Proton Exchange Membrane Water Electrolysis

Water-Hydroxide Trapping in Hollandite-Type Iridium Oxide Enables Efficient Proton Exchange Membrane Water Electrolysis

The development of highly active iridium oxides with excellent stability in acidic environments and significantly reduced Ir content is crucial for advancing competitive proton exchange membrane water electrolyzer (PEMWE) technologies. In this study, an intrinsically active acid-stable low-iridium (Ir/IrOx(OH)y·(H2O)n) OER electrocatalyst via an alkali-assisted ethylene glycol reduction method is designed. The Ir/IrOx(OH)y·(H2O)n shows a hollandite-like structure with abundant edge-sharing IrO6 octahedra that accommodates structural water and OH ligands in its tunnels. In situ/operando spectroscopies demonstrate that lattice water (or OH ligands)–mediated oxygen exchange bypasses key rate-limiting steps in the OER process, including oxygen–oxygen bond formation in the adsorbate evolution mechanism (AEM) and deprotonation in the lattice oxygen mechanism (LOM), which typically hinder OER efficiency. Moreover, the interfacial OH ligands are shown to accelerate the deprotonation of OER intermediates, thereby enhancing the kinetics of the hydrogen evolution reaction (HER). The resulting Ir/IrOx(OH)y·(H2O)n catalyst achieves a lower overpotential of 1.79 V and exhibits high durability, sustaining 1200 h at 1 A cm−2 under industrial conditions. These findings highlight the potential of this catalyst for high-performance, durable PEMWE systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信