大气重力波与极光纬度中尺度电离层扰动

IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Alexander Kozlovsky, Gunter Stober, Ruslan Sherstyukov, Mark Lester, Evgenia Belova, Johan Kero, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa
{"title":"大气重力波与极光纬度中尺度电离层扰动","authors":"Alexander Kozlovsky, Gunter Stober, Ruslan Sherstyukov, Mark Lester, Evgenia Belova, Johan Kero, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa","doi":"10.1007/s10712-025-09880-0","DOIUrl":null,"url":null,"abstract":"<p>To investigate physical links between the Earth atmosphere and ionosphere, we present data of the medium-scale atmospheric gravity waves (AGWs, periods 25–100 min) observed at auroral latitudes. The AGWs at 80–100 km altitude were inferred from the wind data of the Nordic meteor radar Cluster with spatial/height/time resolution 90 km/5 km/10 min respectively. At the same time, medium-scale traveling ionospheric disturbances (MSTIDs) were detected as variations of the electron density (critical frequency foF2) at the height of F2 maximum (hmF2, 250–350 km) in the data of the ionosonde at Sodankylä Geophysical Observatory (67°N, 27°E, Finland) operating with 1-min time resolution. We found that, except a “fall anomaly” in mid-September–mid-December, the season-local time distributions of AGW at 90 km and MSTID at hmF2 are similar. Namely, larger amplitudes are observed in the dark-sky conditions, such that the separation between smaller and larger amplitudes occurs at solar terminator. However, during the fall anomaly, amplitudes of MSTID at hmF2 are the same as in spring- and wintertime, whereas AGWs at 90 km are practically suppressed. This anomaly starts with the fall transition in the atmospheric circulation and is associated with a sharp change of the phase of semi-diurnal tides. The results are consistent with the idea that the AGWs observed near the mesopause may be generated due to turbulence in the lower atmosphere (below) or due to electrodynamical forces and auroral activity in the ionospheric E-layer. The latter plays a major role in the auroral region and may be more important in dark-sky conditions.</p>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"131 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atmospheric Gravity Waves and Medium Scale Traveling Ionospheric Disturbances at Auroral Latitudes\",\"authors\":\"Alexander Kozlovsky, Gunter Stober, Ruslan Sherstyukov, Mark Lester, Evgenia Belova, Johan Kero, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa\",\"doi\":\"10.1007/s10712-025-09880-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To investigate physical links between the Earth atmosphere and ionosphere, we present data of the medium-scale atmospheric gravity waves (AGWs, periods 25–100 min) observed at auroral latitudes. The AGWs at 80–100 km altitude were inferred from the wind data of the Nordic meteor radar Cluster with spatial/height/time resolution 90 km/5 km/10 min respectively. At the same time, medium-scale traveling ionospheric disturbances (MSTIDs) were detected as variations of the electron density (critical frequency foF2) at the height of F2 maximum (hmF2, 250–350 km) in the data of the ionosonde at Sodankylä Geophysical Observatory (67°N, 27°E, Finland) operating with 1-min time resolution. We found that, except a “fall anomaly” in mid-September–mid-December, the season-local time distributions of AGW at 90 km and MSTID at hmF2 are similar. Namely, larger amplitudes are observed in the dark-sky conditions, such that the separation between smaller and larger amplitudes occurs at solar terminator. However, during the fall anomaly, amplitudes of MSTID at hmF2 are the same as in spring- and wintertime, whereas AGWs at 90 km are practically suppressed. This anomaly starts with the fall transition in the atmospheric circulation and is associated with a sharp change of the phase of semi-diurnal tides. The results are consistent with the idea that the AGWs observed near the mesopause may be generated due to turbulence in the lower atmosphere (below) or due to electrodynamical forces and auroral activity in the ionospheric E-layer. The latter plays a major role in the auroral region and may be more important in dark-sky conditions.</p>\",\"PeriodicalId\":49458,\"journal\":{\"name\":\"Surveys in Geophysics\",\"volume\":\"131 1\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surveys in Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10712-025-09880-0\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surveys in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10712-025-09880-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

为了研究地球大气和电离层之间的物理联系,我们提供了在极光纬度观测到的中尺度大气重力波(AGWs,周期为25-100分钟)的数据。80 ~ 100 km高度的agw是根据空间/高度/时间分辨率分别为90 km/5 km/10 min的北欧流星雷达团的风资料推断出来的。同时,利用Sodankylä地球物理观测站(67°N, 27°E,芬兰)在1 min时间分辨率下运行的电离层探测器数据,以F2最大高度(hmF2, 250 ~ 350 km)的电子密度(临界频率foF2)变化形式检测到中尺度行电离层扰动(MSTIDs)。结果表明,除9月中旬至12月中旬存在“秋季异常”外,90 km处的AGW和hmF2处的MSTID的季节局时分布基本相似。也就是说,在黑暗的天空条件下观测到较大的振幅,因此在太阳终点处出现了较大振幅和较小振幅的分离。然而,在秋季异常期间,hmF2处的MSTID振幅与春冬季相同,而90 km处的agw实际上被抑制。这种异常始于大气环流的秋季转变,并与半日潮相位的急剧变化有关。这些结果与观测到的在中层顶附近的AGWs可能是由于低层大气(下图)的湍流或电离层e层的电动力和极光活动而产生的观点一致。后者在极光区起主要作用,在暗天条件下可能更重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atmospheric Gravity Waves and Medium Scale Traveling Ionospheric Disturbances at Auroral Latitudes

To investigate physical links between the Earth atmosphere and ionosphere, we present data of the medium-scale atmospheric gravity waves (AGWs, periods 25–100 min) observed at auroral latitudes. The AGWs at 80–100 km altitude were inferred from the wind data of the Nordic meteor radar Cluster with spatial/height/time resolution 90 km/5 km/10 min respectively. At the same time, medium-scale traveling ionospheric disturbances (MSTIDs) were detected as variations of the electron density (critical frequency foF2) at the height of F2 maximum (hmF2, 250–350 km) in the data of the ionosonde at Sodankylä Geophysical Observatory (67°N, 27°E, Finland) operating with 1-min time resolution. We found that, except a “fall anomaly” in mid-September–mid-December, the season-local time distributions of AGW at 90 km and MSTID at hmF2 are similar. Namely, larger amplitudes are observed in the dark-sky conditions, such that the separation between smaller and larger amplitudes occurs at solar terminator. However, during the fall anomaly, amplitudes of MSTID at hmF2 are the same as in spring- and wintertime, whereas AGWs at 90 km are practically suppressed. This anomaly starts with the fall transition in the atmospheric circulation and is associated with a sharp change of the phase of semi-diurnal tides. The results are consistent with the idea that the AGWs observed near the mesopause may be generated due to turbulence in the lower atmosphere (below) or due to electrodynamical forces and auroral activity in the ionospheric E-layer. The latter plays a major role in the auroral region and may be more important in dark-sky conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surveys in Geophysics
Surveys in Geophysics 地学-地球化学与地球物理
CiteScore
10.00
自引率
10.90%
发文量
64
审稿时长
4.5 months
期刊介绍: Surveys in Geophysics publishes refereed review articles on the physical, chemical and biological processes occurring within the Earth, on its surface, in its atmosphere and in the near-Earth space environment, including relations with other bodies in the solar system. Observations, their interpretation, theory and modelling are covered in papers dealing with any of the Earth and space sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信