Caifeng Li, Cuiying Wang, Xianwen Yang, Duo Wang, Fang Wang
{"title":"气候变化下入侵粉蚧(半翅目:假球虫科)全球分布的模拟。","authors":"Caifeng Li, Cuiying Wang, Xianwen Yang, Duo Wang, Fang Wang","doi":"10.1093/jee/toaf029","DOIUrl":null,"url":null,"abstract":"<p><p>The Jack Beardsley mealybug, Pseudococcus jackbeardsleyi Gimpel & Miller (Hemiptera: Pseudococcidae), is a dangerous invasive pest that feeds on plants more than 115 genera from 54 families, and has spread over 59 countries or regions, often causing direct and indirect damage to host plants, and resulting in significant economic losses. In this study, we assessed the potential global distribution of P. jackbeardsleyi using a Maximum Entropy (MaxEnt) model under current and future climate scenarios. Here, we obtained prediction models with high credibility and accuracy, which showed that isothermality (Bio 3) and annual precipitation (Bio 12) were the environmental variables with the largest contribution on the potential distribution of this pest. The potential distribution areas predicted by this study were mainly located in South America, Central Africa, the southern regions of Asia and the eastern coast of Australia. Under future climate scenarios, the total geographical distribution of this pest will contract to varying degrees by the end of this century, but the highly suitable areas will increase. This study provides a reference for the development of control strategies, but also offers a scientific basis for the effective biological control of this pest.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"589-599"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the potential global distribution of the invasive Jack Beardsley mealybug (Hemiptera: Pseudococcidae) under climate change.\",\"authors\":\"Caifeng Li, Cuiying Wang, Xianwen Yang, Duo Wang, Fang Wang\",\"doi\":\"10.1093/jee/toaf029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Jack Beardsley mealybug, Pseudococcus jackbeardsleyi Gimpel & Miller (Hemiptera: Pseudococcidae), is a dangerous invasive pest that feeds on plants more than 115 genera from 54 families, and has spread over 59 countries or regions, often causing direct and indirect damage to host plants, and resulting in significant economic losses. In this study, we assessed the potential global distribution of P. jackbeardsleyi using a Maximum Entropy (MaxEnt) model under current and future climate scenarios. Here, we obtained prediction models with high credibility and accuracy, which showed that isothermality (Bio 3) and annual precipitation (Bio 12) were the environmental variables with the largest contribution on the potential distribution of this pest. The potential distribution areas predicted by this study were mainly located in South America, Central Africa, the southern regions of Asia and the eastern coast of Australia. Under future climate scenarios, the total geographical distribution of this pest will contract to varying degrees by the end of this century, but the highly suitable areas will increase. This study provides a reference for the development of control strategies, but also offers a scientific basis for the effective biological control of this pest.</p>\",\"PeriodicalId\":94077,\"journal\":{\"name\":\"Journal of economic entomology\",\"volume\":\" \",\"pages\":\"589-599\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of economic entomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jee/toaf029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of economic entomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jee/toaf029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling the potential global distribution of the invasive Jack Beardsley mealybug (Hemiptera: Pseudococcidae) under climate change.
The Jack Beardsley mealybug, Pseudococcus jackbeardsleyi Gimpel & Miller (Hemiptera: Pseudococcidae), is a dangerous invasive pest that feeds on plants more than 115 genera from 54 families, and has spread over 59 countries or regions, often causing direct and indirect damage to host plants, and resulting in significant economic losses. In this study, we assessed the potential global distribution of P. jackbeardsleyi using a Maximum Entropy (MaxEnt) model under current and future climate scenarios. Here, we obtained prediction models with high credibility and accuracy, which showed that isothermality (Bio 3) and annual precipitation (Bio 12) were the environmental variables with the largest contribution on the potential distribution of this pest. The potential distribution areas predicted by this study were mainly located in South America, Central Africa, the southern regions of Asia and the eastern coast of Australia. Under future climate scenarios, the total geographical distribution of this pest will contract to varying degrees by the end of this century, but the highly suitable areas will increase. This study provides a reference for the development of control strategies, but also offers a scientific basis for the effective biological control of this pest.