推进纳米技术:用抗菌肽靶向生物膜形成细菌。

IF 5 Q1 ENGINEERING, BIOMEDICAL
BME frontiers Pub Date : 2025-03-04 eCollection Date: 2025-01-01 DOI:10.34133/bmef.0104
Julia Valladares Campos, Janaína Teixeira Costa Pontes, Christian Shleider Carnero Canales, Cesar Augusto Roque-Borda, Fernando Rogério Pavan
{"title":"推进纳米技术:用抗菌肽靶向生物膜形成细菌。","authors":"Julia Valladares Campos, Janaína Teixeira Costa Pontes, Christian Shleider Carnero Canales, Cesar Augusto Roque-Borda, Fernando Rogério Pavan","doi":"10.34133/bmef.0104","DOIUrl":null,"url":null,"abstract":"<p><p>Nanotechnology offers innovative solutions for addressing the challenges posed by biofilm-forming bacteria, which are highly resistant to conventional antimicrobial therapies. This review explores the integration of pharmaceutical nanotechnology with antimicrobial peptides (AMPs) to enhance the treatment of biofilm-related infections. The use of various nanoparticle systems-including inorganic/metallic, polymeric, lipid-based, and dendrimer nanostructures-provides promising avenues for improving drug delivery, targeting, and biofilm disruption. These nanocarriers facilitate the penetration of biofilms, down-regulate biofilm-associated genes, such as ALS1, ALS3, EFG1, and HWP1, and inhibit bacterial defense mechanisms through membrane disruption, reactive oxygen species generation, and intracellular targeting. Furthermore, nanoparticle formulations such as NZ2114-NPs demonstrate enhanced efficacy by reducing biofilm bacterial counts by several orders of magnitude. This review highlights the potential of combining nanotechnology with AMPs to create novel, targeted therapeutic approaches for combatting biofilm-related infections and overcoming the limitations of traditional antimicrobial treatments.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"6 ","pages":"0104"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876546/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancing Nanotechnology: Targeting Biofilm-Forming Bacteria with Antimicrobial Peptides.\",\"authors\":\"Julia Valladares Campos, Janaína Teixeira Costa Pontes, Christian Shleider Carnero Canales, Cesar Augusto Roque-Borda, Fernando Rogério Pavan\",\"doi\":\"10.34133/bmef.0104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanotechnology offers innovative solutions for addressing the challenges posed by biofilm-forming bacteria, which are highly resistant to conventional antimicrobial therapies. This review explores the integration of pharmaceutical nanotechnology with antimicrobial peptides (AMPs) to enhance the treatment of biofilm-related infections. The use of various nanoparticle systems-including inorganic/metallic, polymeric, lipid-based, and dendrimer nanostructures-provides promising avenues for improving drug delivery, targeting, and biofilm disruption. These nanocarriers facilitate the penetration of biofilms, down-regulate biofilm-associated genes, such as ALS1, ALS3, EFG1, and HWP1, and inhibit bacterial defense mechanisms through membrane disruption, reactive oxygen species generation, and intracellular targeting. Furthermore, nanoparticle formulations such as NZ2114-NPs demonstrate enhanced efficacy by reducing biofilm bacterial counts by several orders of magnitude. This review highlights the potential of combining nanotechnology with AMPs to create novel, targeted therapeutic approaches for combatting biofilm-related infections and overcoming the limitations of traditional antimicrobial treatments.</p>\",\"PeriodicalId\":72430,\"journal\":{\"name\":\"BME frontiers\",\"volume\":\"6 \",\"pages\":\"0104\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876546/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BME frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmef.0104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmef.0104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing Nanotechnology: Targeting Biofilm-Forming Bacteria with Antimicrobial Peptides.

Nanotechnology offers innovative solutions for addressing the challenges posed by biofilm-forming bacteria, which are highly resistant to conventional antimicrobial therapies. This review explores the integration of pharmaceutical nanotechnology with antimicrobial peptides (AMPs) to enhance the treatment of biofilm-related infections. The use of various nanoparticle systems-including inorganic/metallic, polymeric, lipid-based, and dendrimer nanostructures-provides promising avenues for improving drug delivery, targeting, and biofilm disruption. These nanocarriers facilitate the penetration of biofilms, down-regulate biofilm-associated genes, such as ALS1, ALS3, EFG1, and HWP1, and inhibit bacterial defense mechanisms through membrane disruption, reactive oxygen species generation, and intracellular targeting. Furthermore, nanoparticle formulations such as NZ2114-NPs demonstrate enhanced efficacy by reducing biofilm bacterial counts by several orders of magnitude. This review highlights the potential of combining nanotechnology with AMPs to create novel, targeted therapeutic approaches for combatting biofilm-related infections and overcoming the limitations of traditional antimicrobial treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信