在文本复杂性建模的情况下,模型可解释性增强了领域泛化。

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Patterns Pub Date : 2025-02-06 eCollection Date: 2025-02-14 DOI:10.1016/j.patter.2025.101177
Frans van der Sluis, Egon L van den Broek
{"title":"在文本复杂性建模的情况下,模型可解释性增强了领域泛化。","authors":"Frans van der Sluis, Egon L van den Broek","doi":"10.1016/j.patter.2025.101177","DOIUrl":null,"url":null,"abstract":"<p><p>Balancing prediction accuracy, model interpretability, and domain generalization (also known as [a.k.a.] out-of-distribution testing/evaluation) is a central challenge in machine learning. To assess this challenge, we took 120 interpretable and 166 opaque models from 77,640 tuned configurations, complemented with ChatGPT, 3 probabilistic language models, and Vec2Read. The models first performed text classification to derive principles of textual complexity (task 1) and then generalized these to predict readers' appraisals of processing difficulty (task 2). The results confirmed the known accuracy-interpretability trade-off on task 1. However, task 2's domain generalization showed that interpretable models outperform complex, opaque models. Multiplicative interactions further improved interpretable models' domain generalization incrementally. We advocate for the value of big data for training, complemented by (1) external theories to enhance interpretability and guide machine learning and (2) small, well-crafted out-of-distribution data to validate models-together ensuring domain generalization and robustness against data shifts.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 2","pages":"101177"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873011/pdf/","citationCount":"0","resultStr":"{\"title\":\"Model interpretability enhances domain generalization in the case of textual complexity modeling.\",\"authors\":\"Frans van der Sluis, Egon L van den Broek\",\"doi\":\"10.1016/j.patter.2025.101177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Balancing prediction accuracy, model interpretability, and domain generalization (also known as [a.k.a.] out-of-distribution testing/evaluation) is a central challenge in machine learning. To assess this challenge, we took 120 interpretable and 166 opaque models from 77,640 tuned configurations, complemented with ChatGPT, 3 probabilistic language models, and Vec2Read. The models first performed text classification to derive principles of textual complexity (task 1) and then generalized these to predict readers' appraisals of processing difficulty (task 2). The results confirmed the known accuracy-interpretability trade-off on task 1. However, task 2's domain generalization showed that interpretable models outperform complex, opaque models. Multiplicative interactions further improved interpretable models' domain generalization incrementally. We advocate for the value of big data for training, complemented by (1) external theories to enhance interpretability and guide machine learning and (2) small, well-crafted out-of-distribution data to validate models-together ensuring domain generalization and robustness against data shifts.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"6 2\",\"pages\":\"101177\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873011/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2025.101177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/14 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2025.101177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

平衡预测精度、模型可解释性和领域泛化(也称为[a.k.a。分布外测试(out- distribution testing/evaluation)是机器学习的核心挑战。为了评估这一挑战,我们从77,640个调优配置中选取了120个可解释模型和166个不透明模型,并补充了ChatGPT、3个概率语言模型和Vec2Read。这些模型首先进行文本分类,得出文本复杂性的原则(任务1),然后将这些原则推广到预测读者对处理难度的评价(任务2)。结果证实了任务1中已知的准确性和可解释性权衡。然而,任务2的领域概括表明,可解释的模型优于复杂的、不透明的模型。乘法交互进一步提高了可解释模型的领域泛化能力。我们提倡大数据在训练中的价值,并辅以:(1)增强可解释性和指导机器学习的外部理论;(2)精心制作的小型分布外数据来验证模型——共同确保领域泛化和对数据转移的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model interpretability enhances domain generalization in the case of textual complexity modeling.

Balancing prediction accuracy, model interpretability, and domain generalization (also known as [a.k.a.] out-of-distribution testing/evaluation) is a central challenge in machine learning. To assess this challenge, we took 120 interpretable and 166 opaque models from 77,640 tuned configurations, complemented with ChatGPT, 3 probabilistic language models, and Vec2Read. The models first performed text classification to derive principles of textual complexity (task 1) and then generalized these to predict readers' appraisals of processing difficulty (task 2). The results confirmed the known accuracy-interpretability trade-off on task 1. However, task 2's domain generalization showed that interpretable models outperform complex, opaque models. Multiplicative interactions further improved interpretable models' domain generalization incrementally. We advocate for the value of big data for training, complemented by (1) external theories to enhance interpretability and guide machine learning and (2) small, well-crafted out-of-distribution data to validate models-together ensuring domain generalization and robustness against data shifts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信