Jesse L Criddle, Kristanti W Wigati, Joao Carlos Locatelli, Juliene Goncalves Costa, Julie J Collis, Andrew Haynes, Xingwei Xu, Louise H Naylor, Shane K Maloney, James D Cotter, Robert A McLaughlin, Howard H Carter, Daniel J Green
{"title":"高温下运动的生理反应:风险缓解和适应的意义","authors":"Jesse L Criddle, Kristanti W Wigati, Joao Carlos Locatelli, Juliene Goncalves Costa, Julie J Collis, Andrew Haynes, Xingwei Xu, Louise H Naylor, Shane K Maloney, James D Cotter, Robert A McLaughlin, Howard H Carter, Daniel J Green","doi":"10.1080/23328940.2024.2431402","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Recent field studies of physical exertion in challenging environmental conditions have reported dissociation between elevation in body core temperature (T<sub>c</sub>) and successful task completion. This prompted us to further examine physiological mechanisms that might underlie variability in the response to exertional heat exposure. We hypothesized that, in response to exercise in the heat, systematic differences in central and peripheral physiological variables would be apparent between participants who successfully completed the task, versus those who became hyperthermic or symptomatic.</p><p><strong>Methods: </strong>Thirty-eight healthy participants attempted a 120-min walk (5 km/h, 2% grade) in a climate-controlled chamber (40°C, 50%RH). At rest and at regular intervals during the walk, measures of physiological heat strain were assessed. Twenty-seven participants were Completers, seven were stopped because their T<sub>c</sub> exceeded 39°C (Hyperthermics), and four became Symptomatic (e.g. lightheaded, headache, dizzy) and did not complete the walk.</p><p><strong>Results: </strong>Visceral adipose tissue was higher in those who became Hyperthermic, compared to the Completers (437 ± 183 vs 245 ± 268 g; <i>p</i> = 0.034), despite similar height and body mass. Hyperthermics also had higher heart rate (<i>p</i> = 0.009), and lower end-diastolic volume (<i>p</i> = 0.031), and stroke volume (<i>p</i> = 0.031) during the early stages of walking, compared to the Completers. None of the Symptomatics reached a T<sub>c</sub> >39°C (symptoms occurred at 38.1 ± 0.4°C), and none of the Hyperthermics reported symptoms.</p><p><strong>Conclusions: </strong>During exertional heat exposure, adiposity and exaggerated early-stage hemodynamic responses were related to T<sub>c</sub> elevation, but hyperthermia was not related to the development of symptoms, and baseline parameters relating to body composition and fitness were not related to symptom development.</p>","PeriodicalId":36837,"journal":{"name":"Temperature","volume":"12 1","pages":"71-84"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875470/pdf/","citationCount":"0","resultStr":"{\"title\":\"Physiological response to exercise in the heat: Implications for risk mitigation and adaptation.\",\"authors\":\"Jesse L Criddle, Kristanti W Wigati, Joao Carlos Locatelli, Juliene Goncalves Costa, Julie J Collis, Andrew Haynes, Xingwei Xu, Louise H Naylor, Shane K Maloney, James D Cotter, Robert A McLaughlin, Howard H Carter, Daniel J Green\",\"doi\":\"10.1080/23328940.2024.2431402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Recent field studies of physical exertion in challenging environmental conditions have reported dissociation between elevation in body core temperature (T<sub>c</sub>) and successful task completion. This prompted us to further examine physiological mechanisms that might underlie variability in the response to exertional heat exposure. We hypothesized that, in response to exercise in the heat, systematic differences in central and peripheral physiological variables would be apparent between participants who successfully completed the task, versus those who became hyperthermic or symptomatic.</p><p><strong>Methods: </strong>Thirty-eight healthy participants attempted a 120-min walk (5 km/h, 2% grade) in a climate-controlled chamber (40°C, 50%RH). At rest and at regular intervals during the walk, measures of physiological heat strain were assessed. Twenty-seven participants were Completers, seven were stopped because their T<sub>c</sub> exceeded 39°C (Hyperthermics), and four became Symptomatic (e.g. lightheaded, headache, dizzy) and did not complete the walk.</p><p><strong>Results: </strong>Visceral adipose tissue was higher in those who became Hyperthermic, compared to the Completers (437 ± 183 vs 245 ± 268 g; <i>p</i> = 0.034), despite similar height and body mass. Hyperthermics also had higher heart rate (<i>p</i> = 0.009), and lower end-diastolic volume (<i>p</i> = 0.031), and stroke volume (<i>p</i> = 0.031) during the early stages of walking, compared to the Completers. None of the Symptomatics reached a T<sub>c</sub> >39°C (symptoms occurred at 38.1 ± 0.4°C), and none of the Hyperthermics reported symptoms.</p><p><strong>Conclusions: </strong>During exertional heat exposure, adiposity and exaggerated early-stage hemodynamic responses were related to T<sub>c</sub> elevation, but hyperthermia was not related to the development of symptoms, and baseline parameters relating to body composition and fitness were not related to symptom development.</p>\",\"PeriodicalId\":36837,\"journal\":{\"name\":\"Temperature\",\"volume\":\"12 1\",\"pages\":\"71-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875470/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Temperature\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23328940.2024.2431402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Temperature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23328940.2024.2431402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
摘要
目的:最近在具有挑战性的环境条件下体力消耗的实地研究已经报道了身体核心温度(Tc)升高与成功完成任务之间的分离。这促使我们进一步研究生理机制,这可能是对运动热暴露的反应变异性的基础。我们假设,在高温下运动的反应中,成功完成任务的参与者与体温过高或有症状的参与者之间的中枢和外周生理变量的系统性差异将是明显的。方法:38名健康参与者尝试在气候控制的室内(40°C, 50%RH)步行120分钟(5公里/小时,坡度2%)。在休息和散步期间的定期间隔,评估生理热应变的测量。27名参与者是完成者,7人因为体温超过39°C(体温过高)而停止行走,4人出现症状(如头晕、头痛、头晕)而没有完成步行。结果:与完成者相比,热疗组的内脏脂肪组织更高(437±183 g vs 245±268 g);P = 0.034),尽管身高和体重相似。与完全者相比,热疗者在步行的早期阶段也有更高的心率(p = 0.009),更低的舒张末期容积(p = 0.031)和搏量(p = 0.031)。所有症状均未达到Tc bbb - 39°C(症状发生在38.1±0.4°C),并且没有热疗者报告出现症状。结论:在运动性热暴露期间,肥胖和早期血流动力学反应夸大与Tc升高有关,但热疗与症状的发展无关,与身体成分和健康相关的基线参数与症状的发展无关。
Physiological response to exercise in the heat: Implications for risk mitigation and adaptation.
Purpose: Recent field studies of physical exertion in challenging environmental conditions have reported dissociation between elevation in body core temperature (Tc) and successful task completion. This prompted us to further examine physiological mechanisms that might underlie variability in the response to exertional heat exposure. We hypothesized that, in response to exercise in the heat, systematic differences in central and peripheral physiological variables would be apparent between participants who successfully completed the task, versus those who became hyperthermic or symptomatic.
Methods: Thirty-eight healthy participants attempted a 120-min walk (5 km/h, 2% grade) in a climate-controlled chamber (40°C, 50%RH). At rest and at regular intervals during the walk, measures of physiological heat strain were assessed. Twenty-seven participants were Completers, seven were stopped because their Tc exceeded 39°C (Hyperthermics), and four became Symptomatic (e.g. lightheaded, headache, dizzy) and did not complete the walk.
Results: Visceral adipose tissue was higher in those who became Hyperthermic, compared to the Completers (437 ± 183 vs 245 ± 268 g; p = 0.034), despite similar height and body mass. Hyperthermics also had higher heart rate (p = 0.009), and lower end-diastolic volume (p = 0.031), and stroke volume (p = 0.031) during the early stages of walking, compared to the Completers. None of the Symptomatics reached a Tc >39°C (symptoms occurred at 38.1 ± 0.4°C), and none of the Hyperthermics reported symptoms.
Conclusions: During exertional heat exposure, adiposity and exaggerated early-stage hemodynamic responses were related to Tc elevation, but hyperthermia was not related to the development of symptoms, and baseline parameters relating to body composition and fitness were not related to symptom development.