道路目标检测中L-YOLO算法的轻量化策略研究。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ji Hong, Kuntao Ye, Shubin Qiu
{"title":"道路目标检测中L-YOLO算法的轻量化策略研究。","authors":"Ji Hong, Kuntao Ye, Shubin Qiu","doi":"10.1038/s41598-025-92148-9","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing complexity of urban traffic, object detection has become critical in autonomous driving and intelligent traffic management. The demand for real-time, efficient object detection systems is growing. However, traditional algorithms often suffer from large parameter sizes and high computational costs, limiting their applicability in resource-constrained environments. To address this issue, we propose L-YOLO, an improved lightweight road object detection algorithm based on YOLOv8s. First, L-HGNetV2 replaces the backbone network of YOLOv8s to enhance feature extraction and fusion efficiency. Second, a small object detection layer is introduced into the feature fusion network, replacing the original C2f modules with the new CStar modules. This modification improves the capture of features and contextual information for small vehicle targets without significantly increasing computational demands. Third, the CIoU loss function is replaced by the FPIoU2 loss function, enhancing the model's robustness. Finally, the layer adaptive magnitude-based model pruning (LAMP) method is applied to prune the convolutional layer channels, significantly reducing the computational burden and parameter count while maintaining accuracy, thus improving operational efficiency. On the KITTI public dataset, L-YOLO achieves a mAP50 of 93.8%, a 2.5% improvement over YOLOv8s. The number of parameters decreases from 11.12 M to 3.58 M, and the computational load is reduced from 28.4 GFLOPs to 14.2 GFLOPs.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"7649"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880549/pdf/","citationCount":"0","resultStr":"{\"title\":\"Study on lightweight strategies for L-YOLO algorithm in road object detection.\",\"authors\":\"Ji Hong, Kuntao Ye, Shubin Qiu\",\"doi\":\"10.1038/s41598-025-92148-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the increasing complexity of urban traffic, object detection has become critical in autonomous driving and intelligent traffic management. The demand for real-time, efficient object detection systems is growing. However, traditional algorithms often suffer from large parameter sizes and high computational costs, limiting their applicability in resource-constrained environments. To address this issue, we propose L-YOLO, an improved lightweight road object detection algorithm based on YOLOv8s. First, L-HGNetV2 replaces the backbone network of YOLOv8s to enhance feature extraction and fusion efficiency. Second, a small object detection layer is introduced into the feature fusion network, replacing the original C2f modules with the new CStar modules. This modification improves the capture of features and contextual information for small vehicle targets without significantly increasing computational demands. Third, the CIoU loss function is replaced by the FPIoU2 loss function, enhancing the model's robustness. Finally, the layer adaptive magnitude-based model pruning (LAMP) method is applied to prune the convolutional layer channels, significantly reducing the computational burden and parameter count while maintaining accuracy, thus improving operational efficiency. On the KITTI public dataset, L-YOLO achieves a mAP50 of 93.8%, a 2.5% improvement over YOLOv8s. The number of parameters decreases from 11.12 M to 3.58 M, and the computational load is reduced from 28.4 GFLOPs to 14.2 GFLOPs.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"7649\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880549/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-92148-9\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-92148-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

随着城市交通的日益复杂,目标检测在自动驾驶和智能交通管理中变得至关重要。对实时、高效的目标检测系统的需求正在增长。然而,传统算法往往存在参数尺寸大、计算成本高的问题,限制了其在资源受限环境中的适用性。为了解决这个问题,我们提出了一种改进的基于YOLOv8s的轻型道路目标检测算法L-YOLO。首先,L-HGNetV2取代YOLOv8s骨干网,提高特征提取和融合效率。其次,在特征融合网络中引入小目标检测层,将原有的C2f模块替换为新的CStar模块;这种修改改进了小型车辆目标的特征和上下文信息的捕获,而不会显著增加计算需求。第三,用FPIoU2损失函数代替CIoU损失函数,增强了模型的鲁棒性。最后,采用基于层自适应幅度的模型剪枝(LAMP)方法对卷积层通道进行剪枝,在保持精度的同时显著减少了计算量和参数数量,提高了运算效率。在KITTI公共数据集上,L-YOLO实现了93.8%的mAP50,比YOLOv8s提高了2.5%。参数个数从11.12 M减少到3.58 M,计算量从28.4 GFLOPs减少到14.2 GFLOPs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Study on lightweight strategies for L-YOLO algorithm in road object detection.

Study on lightweight strategies for L-YOLO algorithm in road object detection.

Study on lightweight strategies for L-YOLO algorithm in road object detection.

Study on lightweight strategies for L-YOLO algorithm in road object detection.

With the increasing complexity of urban traffic, object detection has become critical in autonomous driving and intelligent traffic management. The demand for real-time, efficient object detection systems is growing. However, traditional algorithms often suffer from large parameter sizes and high computational costs, limiting their applicability in resource-constrained environments. To address this issue, we propose L-YOLO, an improved lightweight road object detection algorithm based on YOLOv8s. First, L-HGNetV2 replaces the backbone network of YOLOv8s to enhance feature extraction and fusion efficiency. Second, a small object detection layer is introduced into the feature fusion network, replacing the original C2f modules with the new CStar modules. This modification improves the capture of features and contextual information for small vehicle targets without significantly increasing computational demands. Third, the CIoU loss function is replaced by the FPIoU2 loss function, enhancing the model's robustness. Finally, the layer adaptive magnitude-based model pruning (LAMP) method is applied to prune the convolutional layer channels, significantly reducing the computational burden and parameter count while maintaining accuracy, thus improving operational efficiency. On the KITTI public dataset, L-YOLO achieves a mAP50 of 93.8%, a 2.5% improvement over YOLOv8s. The number of parameters decreases from 11.12 M to 3.58 M, and the computational load is reduced from 28.4 GFLOPs to 14.2 GFLOPs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信