{"title":"赤霉素相关基因的亚基因组不对称在竹的快速生长调控中起重要作用。","authors":"Ling Mao, Cen Guo, Liang-Zhong Niu, Yu-Jiao Wang, Guihua Jin, Yi-Zhou Yang, Ke-Cheng Qian, Yang Yang, Xuemei Zhang, Peng-Fei Ma, De-Zhu Li, Zhen-Hua Guo","doi":"10.1016/j.pld.2024.10.004","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid growth is an innovative trait of woody bamboos that has been widely studied. However, the genetic basis and evolution of this trait are poorly understood. Taking advantage of genomic resources of 11 representative bamboos at different ploidal levels, we integrated morphological, physiological, and transcriptomic datasets to investigate rapid growth. In particular, these bamboos include two large-sized and a small-sized woody species, compared with a diploid herbaceous species. Our results showed that gibberellin A1 was important for the rapid shoot growth of the world's largest bamboo, <i>Dendrocalamus sinicus</i>, and indicated that two gibberellins (GAs)-related genes, <i>KAO</i> and <i>SLRL1</i>, were key to the rapid shoot growth and culm size in woody bamboos. The expression of GAs-related genes exhibited significant subgenome asymmetry with subgenomes A and C demonstrating expression dominance in the large-sized woody bamboos while the generally submissive subgenomes B and D dominating in the small-sized species. The subgenome asymmetry was found to be correlated with the subgenome-specific gene structure, particularly UTRs and core promoters. Our study provides novel insights into the molecular mechanism and evolution of rapid shoot growth following allopolyploidization in woody bamboos, particularly via subgenome asymmetry. These findings are helpful for understanding of how polyploidization in general and subgenome asymmetry in particular contributed to the origin of innovative traits in plants.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 1","pages":"68-81"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873579/pdf/","citationCount":"0","resultStr":"{\"title\":\"Subgenome asymmetry of gibberellins-related genes plays important roles in regulating rapid growth of bamboos.\",\"authors\":\"Ling Mao, Cen Guo, Liang-Zhong Niu, Yu-Jiao Wang, Guihua Jin, Yi-Zhou Yang, Ke-Cheng Qian, Yang Yang, Xuemei Zhang, Peng-Fei Ma, De-Zhu Li, Zhen-Hua Guo\",\"doi\":\"10.1016/j.pld.2024.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rapid growth is an innovative trait of woody bamboos that has been widely studied. However, the genetic basis and evolution of this trait are poorly understood. Taking advantage of genomic resources of 11 representative bamboos at different ploidal levels, we integrated morphological, physiological, and transcriptomic datasets to investigate rapid growth. In particular, these bamboos include two large-sized and a small-sized woody species, compared with a diploid herbaceous species. Our results showed that gibberellin A1 was important for the rapid shoot growth of the world's largest bamboo, <i>Dendrocalamus sinicus</i>, and indicated that two gibberellins (GAs)-related genes, <i>KAO</i> and <i>SLRL1</i>, were key to the rapid shoot growth and culm size in woody bamboos. The expression of GAs-related genes exhibited significant subgenome asymmetry with subgenomes A and C demonstrating expression dominance in the large-sized woody bamboos while the generally submissive subgenomes B and D dominating in the small-sized species. The subgenome asymmetry was found to be correlated with the subgenome-specific gene structure, particularly UTRs and core promoters. Our study provides novel insights into the molecular mechanism and evolution of rapid shoot growth following allopolyploidization in woody bamboos, particularly via subgenome asymmetry. These findings are helpful for understanding of how polyploidization in general and subgenome asymmetry in particular contributed to the origin of innovative traits in plants.</p>\",\"PeriodicalId\":20224,\"journal\":{\"name\":\"Plant Diversity\",\"volume\":\"47 1\",\"pages\":\"68-81\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873579/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Diversity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.pld.2024.10.004\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2024.10.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Subgenome asymmetry of gibberellins-related genes plays important roles in regulating rapid growth of bamboos.
Rapid growth is an innovative trait of woody bamboos that has been widely studied. However, the genetic basis and evolution of this trait are poorly understood. Taking advantage of genomic resources of 11 representative bamboos at different ploidal levels, we integrated morphological, physiological, and transcriptomic datasets to investigate rapid growth. In particular, these bamboos include two large-sized and a small-sized woody species, compared with a diploid herbaceous species. Our results showed that gibberellin A1 was important for the rapid shoot growth of the world's largest bamboo, Dendrocalamus sinicus, and indicated that two gibberellins (GAs)-related genes, KAO and SLRL1, were key to the rapid shoot growth and culm size in woody bamboos. The expression of GAs-related genes exhibited significant subgenome asymmetry with subgenomes A and C demonstrating expression dominance in the large-sized woody bamboos while the generally submissive subgenomes B and D dominating in the small-sized species. The subgenome asymmetry was found to be correlated with the subgenome-specific gene structure, particularly UTRs and core promoters. Our study provides novel insights into the molecular mechanism and evolution of rapid shoot growth following allopolyploidization in woody bamboos, particularly via subgenome asymmetry. These findings are helpful for understanding of how polyploidization in general and subgenome asymmetry in particular contributed to the origin of innovative traits in plants.
Plant DiversityAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍:
Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that
advance our understanding of the past and current distribution of plants,
contribute to the development of more phylogenetically accurate taxonomic classifications,
present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists.
While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance.
Fields covered by the journal include:
plant systematics and taxonomy-
evolutionary developmental biology-
reproductive biology-
phylo- and biogeography-
evolutionary ecology-
population biology-
conservation biology-
palaeobotany-
molecular evolution-
comparative and evolutionary genomics-
physiology-
biochemistry