基于深度学习的法洛四联症超声心动图预测心脏磁共振射血分数。

IF 1.5 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Arnav Adhikari, G Vick Wesley, Minh B Nguyen, Tam T Doan, Mounica Y Rao, Anitha Parthiban, Lance Patterson, Kashika Adhikari, David Ouyang, Jeffery S Heinle, Lalita Wadhwa
{"title":"基于深度学习的法洛四联症超声心动图预测心脏磁共振射血分数。","authors":"Arnav Adhikari, G Vick Wesley, Minh B Nguyen, Tam T Doan, Mounica Y Rao, Anitha Parthiban, Lance Patterson, Kashika Adhikari, David Ouyang, Jeffery S Heinle, Lalita Wadhwa","doi":"10.1007/s00246-025-03802-y","DOIUrl":null,"url":null,"abstract":"<p><p>Systolic function assessment is essential in children with congenital heart disease. Traditional methods of echocardiographic left ventricular ejection fraction (LVEF) estimation might overestimate systolic function compared to the gold standard of cardiac magnetic resonance imaging (CMR), especially in Tetralogy of Fallot (TOF). Deep learning technologies such as EchoNet-Dynamic offer more consistent cardiac evaluations and can potentially accurately predict LVEF using echocardiographic videos. The EchoNet-Dynamic/EchoNet-Peds models predict LVEF using echocardiograms with expert-measured LVEF as the ground truth. Using a transfer learning approach, we fine-tuned this model to predict LVEF with CMR-derived LVEF as ground truth and TOF echocardiograms as input images. For echocardiograms in the PSAX view, the model predicted CMR LVEF with an R2 of 0.79 and an MAE of 4.41. For the A4C view, the model predicted CMR LVEF with an R2 of 0.53 and an MAE of 6.4. Plotted ROC curves indicate that both tuned models differentiated well between normal and reduced LVEF. This study shows the potential of Convolutional Neural Network (CNN) models in transforming the field of cardiac imaging interpretation via a hybrid approach using the CMR labels and echocardiogram videos offering advancements over conventional methods.</p>","PeriodicalId":19814,"journal":{"name":"Pediatric Cardiology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Cardiac Magnetic Resonance-Derived Ejection Fraction from Echocardiogram Via Deep Learning Approach in Tetralogy of Fallot.\",\"authors\":\"Arnav Adhikari, G Vick Wesley, Minh B Nguyen, Tam T Doan, Mounica Y Rao, Anitha Parthiban, Lance Patterson, Kashika Adhikari, David Ouyang, Jeffery S Heinle, Lalita Wadhwa\",\"doi\":\"10.1007/s00246-025-03802-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Systolic function assessment is essential in children with congenital heart disease. Traditional methods of echocardiographic left ventricular ejection fraction (LVEF) estimation might overestimate systolic function compared to the gold standard of cardiac magnetic resonance imaging (CMR), especially in Tetralogy of Fallot (TOF). Deep learning technologies such as EchoNet-Dynamic offer more consistent cardiac evaluations and can potentially accurately predict LVEF using echocardiographic videos. The EchoNet-Dynamic/EchoNet-Peds models predict LVEF using echocardiograms with expert-measured LVEF as the ground truth. Using a transfer learning approach, we fine-tuned this model to predict LVEF with CMR-derived LVEF as ground truth and TOF echocardiograms as input images. For echocardiograms in the PSAX view, the model predicted CMR LVEF with an R2 of 0.79 and an MAE of 4.41. For the A4C view, the model predicted CMR LVEF with an R2 of 0.53 and an MAE of 6.4. Plotted ROC curves indicate that both tuned models differentiated well between normal and reduced LVEF. This study shows the potential of Convolutional Neural Network (CNN) models in transforming the field of cardiac imaging interpretation via a hybrid approach using the CMR labels and echocardiogram videos offering advancements over conventional methods.</p>\",\"PeriodicalId\":19814,\"journal\":{\"name\":\"Pediatric Cardiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pediatric Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00246-025-03802-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00246-025-03802-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

收缩期功能评估是必要的儿童先天性心脏病。传统的超声心动图左室射血分数(LVEF)估计方法与心脏磁共振成像(CMR)的金标准相比可能高估了收缩功能,特别是在法洛四联症(TOF)中。EchoNet-Dynamic等深度学习技术提供了更一致的心脏评估,并可能通过超声心动图视频准确预测LVEF。EchoNet-Dynamic/EchoNet-Peds模型使用超声心动图预测LVEF,专家测量的LVEF作为基础事实。使用迁移学习方法,我们对该模型进行了微调,以cmr衍生的LVEF作为基础真理,TOF超声心动图作为输入图像来预测LVEF。对于PSAX视图的超声心动图,该模型预测CMR LVEF的R2为0.79,MAE为4.41。对于A4C视图,该模型预测CMR LVEF的R2为0.53,MAE为6.4。绘制的ROC曲线表明,两种调整后的模型都能很好地区分正常和降低的LVEF。本研究显示了卷积神经网络(CNN)模型在通过使用CMR标签和超声心动图视频的混合方法改变心脏成像解释领域的潜力,提供了传统方法的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Cardiac Magnetic Resonance-Derived Ejection Fraction from Echocardiogram Via Deep Learning Approach in Tetralogy of Fallot.

Systolic function assessment is essential in children with congenital heart disease. Traditional methods of echocardiographic left ventricular ejection fraction (LVEF) estimation might overestimate systolic function compared to the gold standard of cardiac magnetic resonance imaging (CMR), especially in Tetralogy of Fallot (TOF). Deep learning technologies such as EchoNet-Dynamic offer more consistent cardiac evaluations and can potentially accurately predict LVEF using echocardiographic videos. The EchoNet-Dynamic/EchoNet-Peds models predict LVEF using echocardiograms with expert-measured LVEF as the ground truth. Using a transfer learning approach, we fine-tuned this model to predict LVEF with CMR-derived LVEF as ground truth and TOF echocardiograms as input images. For echocardiograms in the PSAX view, the model predicted CMR LVEF with an R2 of 0.79 and an MAE of 4.41. For the A4C view, the model predicted CMR LVEF with an R2 of 0.53 and an MAE of 6.4. Plotted ROC curves indicate that both tuned models differentiated well between normal and reduced LVEF. This study shows the potential of Convolutional Neural Network (CNN) models in transforming the field of cardiac imaging interpretation via a hybrid approach using the CMR labels and echocardiogram videos offering advancements over conventional methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pediatric Cardiology
Pediatric Cardiology 医学-小儿科
CiteScore
3.30
自引率
6.20%
发文量
258
审稿时长
12 months
期刊介绍: The editor of Pediatric Cardiology welcomes original manuscripts concerning all aspects of heart disease in infants, children, and adolescents, including embryology and anatomy, physiology and pharmacology, biochemistry, pathology, genetics, radiology, clinical aspects, investigative cardiology, electrophysiology and echocardiography, and cardiac surgery. Articles which may include original articles, review articles, letters to the editor etc., must be written in English and must be submitted solely to Pediatric Cardiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信