基于机器学习的人体皮肤空间分辨漫反射和自身荧光光谱分类对光化性角化病和皮肤癌诊断的帮助。

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2025-03-01 Epub Date: 2025-03-04 DOI:10.1117/1.JBO.30.3.035001
Valentin Kupriyanov, Walter Blondel, Christian Daul, Martin Hohmann, Grégoire Khairallah, Yury Kistenev, Marine Amouroux
{"title":"基于机器学习的人体皮肤空间分辨漫反射和自身荧光光谱分类对光化性角化病和皮肤癌诊断的帮助。","authors":"Valentin Kupriyanov, Walter Blondel, Christian Daul, Martin Hohmann, Grégoire Khairallah, Yury Kistenev, Marine Amouroux","doi":"10.1117/1.JBO.30.3.035001","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>The incidence of keratinocyte carcinomas (KCs) is increasing every year, making the task of developing new methods for KC early diagnosis of utmost medical and economical importance.</p><p><strong>Aim: </strong>We aim to evaluate the KC diagnostic aid performance of an optical spectroscopy device associated with a machine-learning classification method.</p><p><strong>Approach: </strong>We present the classification performance of autofluorescence and diffuse reflectance optical spectra obtained <i>in vivo</i> from 131 patients on four histological classes: basal cell carcinoma (BCC), squamous cell carcinoma (SCC), actinic keratosis (AK), and healthy (H) skin. Classification accuracies obtained by support vector machine, discriminant analysis, and multilayer perceptron in binary- and multi-class modes were compared to define the best classification pipeline.</p><p><strong>Results: </strong>The accuracy of binary classification tests was <math><mrow><mo>></mo> <mn>80</mn> <mo>%</mo></mrow> </math> to discriminate BCC or SCC from H. For AK versus other classes, the classification achieved a 65% to 75% accuracy. In multiclass (three or four classes) classification modes, accuracy reached 57%. Fusion of decisions increased classification accuracies (up to 10 percentage point-increase), proving the interest of multimodal spectroscopy compared with a single modality.</p><p><strong>Conclusions: </strong>Such levels of classification accuracy are promising as they are comparable to those obtained by general practitioners in KC screening.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 3","pages":"035001"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877879/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based classification of spatially resolved diffuse reflectance and autofluorescence spectra acquired on human skin for actinic keratoses and skin carcinoma diagnostics aid.\",\"authors\":\"Valentin Kupriyanov, Walter Blondel, Christian Daul, Martin Hohmann, Grégoire Khairallah, Yury Kistenev, Marine Amouroux\",\"doi\":\"10.1117/1.JBO.30.3.035001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>The incidence of keratinocyte carcinomas (KCs) is increasing every year, making the task of developing new methods for KC early diagnosis of utmost medical and economical importance.</p><p><strong>Aim: </strong>We aim to evaluate the KC diagnostic aid performance of an optical spectroscopy device associated with a machine-learning classification method.</p><p><strong>Approach: </strong>We present the classification performance of autofluorescence and diffuse reflectance optical spectra obtained <i>in vivo</i> from 131 patients on four histological classes: basal cell carcinoma (BCC), squamous cell carcinoma (SCC), actinic keratosis (AK), and healthy (H) skin. Classification accuracies obtained by support vector machine, discriminant analysis, and multilayer perceptron in binary- and multi-class modes were compared to define the best classification pipeline.</p><p><strong>Results: </strong>The accuracy of binary classification tests was <math><mrow><mo>></mo> <mn>80</mn> <mo>%</mo></mrow> </math> to discriminate BCC or SCC from H. For AK versus other classes, the classification achieved a 65% to 75% accuracy. In multiclass (three or four classes) classification modes, accuracy reached 57%. Fusion of decisions increased classification accuracies (up to 10 percentage point-increase), proving the interest of multimodal spectroscopy compared with a single modality.</p><p><strong>Conclusions: </strong>Such levels of classification accuracy are promising as they are comparable to those obtained by general practitioners in KC screening.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"30 3\",\"pages\":\"035001\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877879/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.30.3.035001\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.3.035001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

意义:角化细胞癌(KCs)的发病率每年都在增加,这使得开发新的KCs早期诊断方法的任务具有极大的医学和经济意义。目的:我们的目标是评估与机器学习分类方法相关的光谱学设备的KC诊断辅助性能。方法:我们介绍了从四种组织学类型:基底细胞癌(BCC)、鳞状细胞癌(SCC)、光化性角化病(AK)和健康皮肤(H)的131例患者体内获得的自身荧光和漫反射光谱的分类性能。比较了支持向量机、判别分析和多层感知器在二分类和多分类模式下的分类精度,确定了最佳分类管道。结果:二分类测试区分BCC或SCC与h的准确率为bb0 ~ 80%。对于AK与其他类别,分类准确率达到65% ~ 75%。在多类(3类或4类)分类模式下,准确率达到57%。决策融合提高了分类精度(最多提高了10个百分点),证明了与单一模态相比,多模态光谱的优势。结论:这样的分类准确度水平是有希望的,因为它们与全科医生在KC筛查中获得的结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-based classification of spatially resolved diffuse reflectance and autofluorescence spectra acquired on human skin for actinic keratoses and skin carcinoma diagnostics aid.

Significance: The incidence of keratinocyte carcinomas (KCs) is increasing every year, making the task of developing new methods for KC early diagnosis of utmost medical and economical importance.

Aim: We aim to evaluate the KC diagnostic aid performance of an optical spectroscopy device associated with a machine-learning classification method.

Approach: We present the classification performance of autofluorescence and diffuse reflectance optical spectra obtained in vivo from 131 patients on four histological classes: basal cell carcinoma (BCC), squamous cell carcinoma (SCC), actinic keratosis (AK), and healthy (H) skin. Classification accuracies obtained by support vector machine, discriminant analysis, and multilayer perceptron in binary- and multi-class modes were compared to define the best classification pipeline.

Results: The accuracy of binary classification tests was > 80 % to discriminate BCC or SCC from H. For AK versus other classes, the classification achieved a 65% to 75% accuracy. In multiclass (three or four classes) classification modes, accuracy reached 57%. Fusion of decisions increased classification accuracies (up to 10 percentage point-increase), proving the interest of multimodal spectroscopy compared with a single modality.

Conclusions: Such levels of classification accuracy are promising as they are comparable to those obtained by general practitioners in KC screening.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信