化学诱导的衰老促进人类小胶质样细胞的功能变化。

IF 3.5 3区 医学 Q2 IMMUNOLOGY
Journal of Immunology Research Pub Date : 2025-02-24 eCollection Date: 2025-01-01 DOI:10.1155/jimr/3214633
S Armanville, C Tocco, Z Haj Mohamad, D Clarke, R Robitaille, J Drouin-Ouellet
{"title":"化学诱导的衰老促进人类小胶质样细胞的功能变化。","authors":"S Armanville, C Tocco, Z Haj Mohamad, D Clarke, R Robitaille, J Drouin-Ouellet","doi":"10.1155/jimr/3214633","DOIUrl":null,"url":null,"abstract":"<p><p>In response to various stressors, cells can enter a state called cellular senescence which is characterized by irreversible cell cycle arrest and a senescence-associated secretory phenotype (SASP). The progressive accumulation of senescent glial cells in the central nervous system (CNS) with aging suggests a potential role for senescence as driver of aging and inflammation in the brain. As the main immune cell population residing in the CNS, microglia are thought to play a pivotal role in the progression of age-associated neuroinflammation. Furthermore, due to their slow turnover, microglia are highly susceptible to undergoing cellular senescence. However, current understanding of age-related changes in microglia and their impact on brain aging is limited. Due to the challenge in accessing human primary microglia and the lack of models to adequately recapitulate aging, this knowledge is predominantly limited to rodent studies. Here, we chemically induced senescence in a human immortalized microglia cell line with a cocktail of senescence-inducing molecules. We demonstrate that chemically induced senescent microglia adopt a proinflammatory phenotype, have reduced phagocytic activity, and impaired calcium activity. Our results show that chemically induced senescence can mimic features of cellular aging and can provide insight into the impact of aging and cellular senescence on human microglia.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"3214633"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876530/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chemically Induced Senescence Prompts Functional Changes in Human Microglia-Like Cells.\",\"authors\":\"S Armanville, C Tocco, Z Haj Mohamad, D Clarke, R Robitaille, J Drouin-Ouellet\",\"doi\":\"10.1155/jimr/3214633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to various stressors, cells can enter a state called cellular senescence which is characterized by irreversible cell cycle arrest and a senescence-associated secretory phenotype (SASP). The progressive accumulation of senescent glial cells in the central nervous system (CNS) with aging suggests a potential role for senescence as driver of aging and inflammation in the brain. As the main immune cell population residing in the CNS, microglia are thought to play a pivotal role in the progression of age-associated neuroinflammation. Furthermore, due to their slow turnover, microglia are highly susceptible to undergoing cellular senescence. However, current understanding of age-related changes in microglia and their impact on brain aging is limited. Due to the challenge in accessing human primary microglia and the lack of models to adequately recapitulate aging, this knowledge is predominantly limited to rodent studies. Here, we chemically induced senescence in a human immortalized microglia cell line with a cocktail of senescence-inducing molecules. We demonstrate that chemically induced senescent microglia adopt a proinflammatory phenotype, have reduced phagocytic activity, and impaired calcium activity. Our results show that chemically induced senescence can mimic features of cellular aging and can provide insight into the impact of aging and cellular senescence on human microglia.</p>\",\"PeriodicalId\":15952,\"journal\":{\"name\":\"Journal of Immunology Research\",\"volume\":\"2025 \",\"pages\":\"3214633\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876530/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Immunology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/jimr/3214633\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Immunology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/jimr/3214633","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在对各种应激源的反应中,细胞可进入一种称为细胞衰老的状态,其特征是不可逆的细胞周期阻滞和衰老相关分泌表型(SASP)。随着年龄的增长,中枢神经系统(CNS)中衰老胶质细胞的逐渐积累表明衰老可能是大脑衰老和炎症的驱动因素。作为居住在中枢神经系统的主要免疫细胞群,小胶质细胞被认为在与年龄相关的神经炎症的进展中起着关键作用。此外,由于其缓慢的更新,小胶质细胞极易发生细胞衰老。然而,目前对小胶质细胞的年龄相关变化及其对大脑衰老的影响的了解是有限的。由于获取人类初级小胶质细胞的挑战和缺乏充分概括衰老的模型,这方面的知识主要局限于啮齿动物的研究。在这里,我们化学诱导衰老的鸡尾酒衰老诱导分子在人类永生化小胶质细胞系。我们证明,化学诱导的衰老小胶质细胞采用促炎表型,吞噬活性降低,钙活性受损。我们的研究结果表明,化学诱导的衰老可以模拟细胞衰老的特征,并可以深入了解衰老和细胞衰老对人类小胶质细胞的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemically Induced Senescence Prompts Functional Changes in Human Microglia-Like Cells.

In response to various stressors, cells can enter a state called cellular senescence which is characterized by irreversible cell cycle arrest and a senescence-associated secretory phenotype (SASP). The progressive accumulation of senescent glial cells in the central nervous system (CNS) with aging suggests a potential role for senescence as driver of aging and inflammation in the brain. As the main immune cell population residing in the CNS, microglia are thought to play a pivotal role in the progression of age-associated neuroinflammation. Furthermore, due to their slow turnover, microglia are highly susceptible to undergoing cellular senescence. However, current understanding of age-related changes in microglia and their impact on brain aging is limited. Due to the challenge in accessing human primary microglia and the lack of models to adequately recapitulate aging, this knowledge is predominantly limited to rodent studies. Here, we chemically induced senescence in a human immortalized microglia cell line with a cocktail of senescence-inducing molecules. We demonstrate that chemically induced senescent microglia adopt a proinflammatory phenotype, have reduced phagocytic activity, and impaired calcium activity. Our results show that chemically induced senescence can mimic features of cellular aging and can provide insight into the impact of aging and cellular senescence on human microglia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
2.40%
发文量
423
审稿时长
15 weeks
期刊介绍: Journal of Immunology Research is a peer-reviewed, Open Access journal that provides a platform for scientists and clinicians working in different areas of immunology and therapy. The journal publishes research articles, review articles, as well as clinical studies related to classical immunology, molecular immunology, clinical immunology, cancer immunology, transplantation immunology, immune pathology, immunodeficiency, autoimmune diseases, immune disorders, and immunotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信