{"title":"检测小GTPase活性的各种方法:从基于放射性同位素的方法到小GTPase活性分析(SAIYAN)系统。","authors":"Miharu Maeda, Kota Saito","doi":"10.1093/jb/mvaf012","DOIUrl":null,"url":null,"abstract":"<p><p>Small GTPases act as molecular switches regulating various cellular processes by cycling between the GDP- and GTP-bound states. Several methods, including radioisotope-based nucleotide exchange assays, effector-binding pull-down assays and fluorescence-based biosensor methods, have been developed to assess the activation of small GTPases. In vitro techniques mainly provide quantitative insights, whereas live-cell imaging approaches facilitate the real-time monitoring of the activation dynamics of small GTPases. Recent advances, such as the development of fluorescence resonance energy transfer-based probes and membrane-localization sensors, have improved the spatial and temporal resolution of small GTPase activation dynamics. Specifically, the small GTPase activity analysing system using a split fluorescent protein to detect membrane recruitment upon activation provides a novel approach to study small GTPases in living cells. This review comprehensively discusses various conventional and emerging small GTPase activation analysis techniques, highlighting their advantages and disadvantages in studying small GTPase activation dynamics under different cellular conditions.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"321-327"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036015/pdf/","citationCount":"0","resultStr":"{\"title\":\"Various methods to detect small GTPase activation: from radioisotope-based methods to the Small GTPase ActIvitY ANalysing (SAIYAN) system.\",\"authors\":\"Miharu Maeda, Kota Saito\",\"doi\":\"10.1093/jb/mvaf012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small GTPases act as molecular switches regulating various cellular processes by cycling between the GDP- and GTP-bound states. Several methods, including radioisotope-based nucleotide exchange assays, effector-binding pull-down assays and fluorescence-based biosensor methods, have been developed to assess the activation of small GTPases. In vitro techniques mainly provide quantitative insights, whereas live-cell imaging approaches facilitate the real-time monitoring of the activation dynamics of small GTPases. Recent advances, such as the development of fluorescence resonance energy transfer-based probes and membrane-localization sensors, have improved the spatial and temporal resolution of small GTPase activation dynamics. Specifically, the small GTPase activity analysing system using a split fluorescent protein to detect membrane recruitment upon activation provides a novel approach to study small GTPases in living cells. This review comprehensively discusses various conventional and emerging small GTPase activation analysis techniques, highlighting their advantages and disadvantages in studying small GTPase activation dynamics under different cellular conditions.</p>\",\"PeriodicalId\":15234,\"journal\":{\"name\":\"Journal of biochemistry\",\"volume\":\" \",\"pages\":\"321-327\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036015/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jb/mvaf012\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvaf012","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Various methods to detect small GTPase activation: from radioisotope-based methods to the Small GTPase ActIvitY ANalysing (SAIYAN) system.
Small GTPases act as molecular switches regulating various cellular processes by cycling between the GDP- and GTP-bound states. Several methods, including radioisotope-based nucleotide exchange assays, effector-binding pull-down assays and fluorescence-based biosensor methods, have been developed to assess the activation of small GTPases. In vitro techniques mainly provide quantitative insights, whereas live-cell imaging approaches facilitate the real-time monitoring of the activation dynamics of small GTPases. Recent advances, such as the development of fluorescence resonance energy transfer-based probes and membrane-localization sensors, have improved the spatial and temporal resolution of small GTPase activation dynamics. Specifically, the small GTPase activity analysing system using a split fluorescent protein to detect membrane recruitment upon activation provides a novel approach to study small GTPases in living cells. This review comprehensively discusses various conventional and emerging small GTPase activation analysis techniques, highlighting their advantages and disadvantages in studying small GTPase activation dynamics under different cellular conditions.
期刊介绍:
The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.