利用三维生物打印技术生成真实的伤口愈合模型。

IF 5.8 3区 医学 Q1 DERMATOLOGY
Giselle Y Díaz, Victor A da Silva, Farnoosh Kalantarnia, Kali Scheck, Silken A Tschofen, Stephen W Tuffs, Stephanie M Willerth
{"title":"利用三维生物打印技术生成真实的伤口愈合模型。","authors":"Giselle Y Díaz, Victor A da Silva, Farnoosh Kalantarnia, Kali Scheck, Silken A Tschofen, Stephen W Tuffs, Stephanie M Willerth","doi":"10.1089/wound.2024.0138","DOIUrl":null,"url":null,"abstract":"<p><p><b>Significance:</b> The skin serves as the primary defense against external stimuli, making it vulnerable to damage. Injuries can cause a dysregulated environment, resulting in chronic inflammation and inhibition of cell proliferation and migration, which delays recovery. Innovative approaches, such as three-dimensional (3D) bioprinting, can foster a controlled healing environment by promoting synergy between the skin microbiome and cells. <b>Recent Advances:</b> Traditional approaches to wound healing have focused on fostering an environment conducive to the interplay between cells, extracellular proteins, and growth factors. 3D bioprinting, a manufacturing technology with applications in tissue engineering, deposits biomaterial-based bioink containing living cells to fabricate custom-designed tissue scaffolds in a layer-by-layer fashion. This process controls the architecture and composition of a construct, producing multilayered and complex structures such as skin. <b>Critical Issues:</b> The selection of biomaterials for scaffolds has been a challenge when 3D skin tissue engineering. While prioritizing mechanical properties, current biomaterials often lack the ability to interact with environmental stimuli such as pH, temperature, or oxygen levels. Employing smart biomaterials that integrate bioactive molecules and adapt to external conditions could overcome these limitations. This innovation would enable scaffolds to create a sustainable wound-healing environment, fostering microbiome balance, reducing inflammation, and facilitating cellular recovery and tissue restoration, addressing critical gaps in existing wound care solutions. <b>Future Directions:</b> Novel bioink formulations for skin injury recovery are focused on improving long-term cell viability, proliferation, vascularization, and immune integration. Efficient recovery of the skin microbiome using bioactive molecules has the potential to create microenriched environments that support the recovery of the skin microbiome and restore immune regulation. This promising direction for future research aims to improve patient outcomes in wound care.</p>","PeriodicalId":7413,"journal":{"name":"Advances in wound care","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Three-Dimensional Bioprinting to Generate Realistic Models of Wound Healing.\",\"authors\":\"Giselle Y Díaz, Victor A da Silva, Farnoosh Kalantarnia, Kali Scheck, Silken A Tschofen, Stephen W Tuffs, Stephanie M Willerth\",\"doi\":\"10.1089/wound.2024.0138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Significance:</b> The skin serves as the primary defense against external stimuli, making it vulnerable to damage. Injuries can cause a dysregulated environment, resulting in chronic inflammation and inhibition of cell proliferation and migration, which delays recovery. Innovative approaches, such as three-dimensional (3D) bioprinting, can foster a controlled healing environment by promoting synergy between the skin microbiome and cells. <b>Recent Advances:</b> Traditional approaches to wound healing have focused on fostering an environment conducive to the interplay between cells, extracellular proteins, and growth factors. 3D bioprinting, a manufacturing technology with applications in tissue engineering, deposits biomaterial-based bioink containing living cells to fabricate custom-designed tissue scaffolds in a layer-by-layer fashion. This process controls the architecture and composition of a construct, producing multilayered and complex structures such as skin. <b>Critical Issues:</b> The selection of biomaterials for scaffolds has been a challenge when 3D skin tissue engineering. While prioritizing mechanical properties, current biomaterials often lack the ability to interact with environmental stimuli such as pH, temperature, or oxygen levels. Employing smart biomaterials that integrate bioactive molecules and adapt to external conditions could overcome these limitations. This innovation would enable scaffolds to create a sustainable wound-healing environment, fostering microbiome balance, reducing inflammation, and facilitating cellular recovery and tissue restoration, addressing critical gaps in existing wound care solutions. <b>Future Directions:</b> Novel bioink formulations for skin injury recovery are focused on improving long-term cell viability, proliferation, vascularization, and immune integration. Efficient recovery of the skin microbiome using bioactive molecules has the potential to create microenriched environments that support the recovery of the skin microbiome and restore immune regulation. This promising direction for future research aims to improve patient outcomes in wound care.</p>\",\"PeriodicalId\":7413,\"journal\":{\"name\":\"Advances in wound care\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in wound care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/wound.2024.0138\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in wound care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/wound.2024.0138","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

意义:皮肤是抵御外界刺激的主要屏障,因此很容易受到损伤。损伤会导致环境失调,导致慢性炎症和细胞增殖和迁移的抑制,从而延迟恢复。创新的方法,如三维(3D)生物打印,可以通过促进皮肤微生物群和细胞之间的协同作用,营造一个可控的愈合环境。最新进展:传统的伤口愈合方法侧重于培养有利于细胞、细胞外蛋白和生长因子之间相互作用的环境。生物3D打印是一种应用于组织工程的制造技术,它可以沉积含有活细胞的基于生物材料的生物墨水,以逐层方式制造定制的组织支架。这个过程控制着建筑的结构和组成,产生多层和复杂的结构,如皮肤。关键问题:在3D皮肤组织工程中,生物材料的选择一直是一个挑战。在优先考虑机械性能的同时,目前的生物材料往往缺乏与环境刺激(如pH值、温度或氧气水平)相互作用的能力。采用集成生物活性分子并适应外部条件的智能生物材料可以克服这些限制。这一创新将使支架能够创造一个可持续的伤口愈合环境,促进微生物群平衡,减少炎症,促进细胞恢复和组织修复,解决现有伤口护理解决方案的关键空白。未来发展方向:用于皮肤损伤恢复的新型生物链接配方专注于提高长期细胞活力、增殖、血管化和免疫整合。使用生物活性分子有效恢复皮肤微生物群有可能创造微富集环境,支持皮肤微生物群的恢复和恢复免疫调节。这一有希望的未来研究方向旨在改善患者伤口护理的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Three-Dimensional Bioprinting to Generate Realistic Models of Wound Healing.

Significance: The skin serves as the primary defense against external stimuli, making it vulnerable to damage. Injuries can cause a dysregulated environment, resulting in chronic inflammation and inhibition of cell proliferation and migration, which delays recovery. Innovative approaches, such as three-dimensional (3D) bioprinting, can foster a controlled healing environment by promoting synergy between the skin microbiome and cells. Recent Advances: Traditional approaches to wound healing have focused on fostering an environment conducive to the interplay between cells, extracellular proteins, and growth factors. 3D bioprinting, a manufacturing technology with applications in tissue engineering, deposits biomaterial-based bioink containing living cells to fabricate custom-designed tissue scaffolds in a layer-by-layer fashion. This process controls the architecture and composition of a construct, producing multilayered and complex structures such as skin. Critical Issues: The selection of biomaterials for scaffolds has been a challenge when 3D skin tissue engineering. While prioritizing mechanical properties, current biomaterials often lack the ability to interact with environmental stimuli such as pH, temperature, or oxygen levels. Employing smart biomaterials that integrate bioactive molecules and adapt to external conditions could overcome these limitations. This innovation would enable scaffolds to create a sustainable wound-healing environment, fostering microbiome balance, reducing inflammation, and facilitating cellular recovery and tissue restoration, addressing critical gaps in existing wound care solutions. Future Directions: Novel bioink formulations for skin injury recovery are focused on improving long-term cell viability, proliferation, vascularization, and immune integration. Efficient recovery of the skin microbiome using bioactive molecules has the potential to create microenriched environments that support the recovery of the skin microbiome and restore immune regulation. This promising direction for future research aims to improve patient outcomes in wound care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in wound care
Advances in wound care Medicine-Emergency Medicine
CiteScore
12.10
自引率
4.10%
发文量
62
期刊介绍: Advances in Wound Care rapidly shares research from bench to bedside, with wound care applications for burns, major trauma, blast injuries, surgery, and diabetic ulcers. The Journal provides a critical, peer-reviewed forum for the field of tissue injury and repair, with an emphasis on acute and chronic wounds. Advances in Wound Care explores novel research approaches and practices to deliver the latest scientific discoveries and developments. Advances in Wound Care coverage includes: Skin bioengineering, Skin and tissue regeneration, Acute, chronic, and complex wounds, Dressings, Anti-scar strategies, Inflammation, Burns and healing, Biofilm, Oxygen and angiogenesis, Critical limb ischemia, Military wound care, New devices and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信