通过Ce掺杂La2CuO4稳定Cu的氧化态,增强CO2电还原成多碳产物。

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Tingting Wan, Chunmei Lv, Ke Ye, Mingchan Ma, Di Hu, Juanxiu Xiao, Wei Xiao
{"title":"通过Ce掺杂La2CuO4稳定Cu的氧化态,增强CO2电还原成多碳产物。","authors":"Tingting Wan,&nbsp;Chunmei Lv,&nbsp;Ke Ye,&nbsp;Mingchan Ma,&nbsp;Di Hu,&nbsp;Juanxiu Xiao,&nbsp;Wei Xiao","doi":"10.1002/smtd.202500005","DOIUrl":null,"url":null,"abstract":"<p>\nStabilizing oxidation state of Cu (Cu<sup>δ+</sup>, δ &gt; 0) sites is the key-enabling issue for electrocatalytic carbon dioxide (CO<sub>2</sub>) reduction reaction (eCO<sub>2</sub>RR) to multicarbon (C<sub>2+</sub>) products. The present study addresses this challenge by introducing cerium (Ce) doping into La<sub>2</sub>CuO<sub>4</sub>. The Ce doping facilitates <i>f</i>–<i>d</i> orbital coupling between Ce 4<i>f</i> and Cu 3<i>d</i> orbitals, suppressing electron enrichment around Cu atoms by transferring electrons from Cu 3<i>d</i> orbitals to Ce 4<i>f</i> orbitals via a Cu−O−Ce chain. These changes modulate the electronic structure of Cu, reduce the distance between neighboring Cu atoms, optimize the binding energy of surface-adsorbed CO (*CO), and lower the reaction energy barrier for *CO dimerization. As a result, the La<sub>1.95</sub>Ce<sub>0.05</sub>CuO<sub>4</sub> catalyst achieves a Faradaic efficiency up to 81% for C<sub>2+</sub> products and maintains high stability over 50 h operation. This work highlights the unique role of Ce doping in stabilizing Cu<sup>δ+</sup> sites and hence enhancing C−C coupling, providing a pathway for designing efficient catalysts for eCO<sub>2</sub>RR.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 8","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilizing Oxidation State of Cu via Ce Doping into La2CuO4 for Enhanced Electroreduction of CO2 to Multicarbon Products\",\"authors\":\"Tingting Wan,&nbsp;Chunmei Lv,&nbsp;Ke Ye,&nbsp;Mingchan Ma,&nbsp;Di Hu,&nbsp;Juanxiu Xiao,&nbsp;Wei Xiao\",\"doi\":\"10.1002/smtd.202500005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nStabilizing oxidation state of Cu (Cu<sup>δ+</sup>, δ &gt; 0) sites is the key-enabling issue for electrocatalytic carbon dioxide (CO<sub>2</sub>) reduction reaction (eCO<sub>2</sub>RR) to multicarbon (C<sub>2+</sub>) products. The present study addresses this challenge by introducing cerium (Ce) doping into La<sub>2</sub>CuO<sub>4</sub>. The Ce doping facilitates <i>f</i>–<i>d</i> orbital coupling between Ce 4<i>f</i> and Cu 3<i>d</i> orbitals, suppressing electron enrichment around Cu atoms by transferring electrons from Cu 3<i>d</i> orbitals to Ce 4<i>f</i> orbitals via a Cu−O−Ce chain. These changes modulate the electronic structure of Cu, reduce the distance between neighboring Cu atoms, optimize the binding energy of surface-adsorbed CO (*CO), and lower the reaction energy barrier for *CO dimerization. As a result, the La<sub>1.95</sub>Ce<sub>0.05</sub>CuO<sub>4</sub> catalyst achieves a Faradaic efficiency up to 81% for C<sub>2+</sub> products and maintains high stability over 50 h operation. This work highlights the unique role of Ce doping in stabilizing Cu<sup>δ+</sup> sites and hence enhancing C−C coupling, providing a pathway for designing efficient catalysts for eCO<sub>2</sub>RR.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\"9 8\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202500005\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202500005","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

稳定Cu (Cuδ+, δ >)位点的氧化态是电催化二氧化碳还原反应(eCO2RR)生成多碳(C2+)产物的关键问题。本研究通过在La2CuO4中引入铈(Ce)掺杂来解决这一挑战。Ce掺杂促进了Ce 4f和Cu 3d轨道之间的f-d轨道耦合,通过Cu- o -Ce链将电子从Cu 3d轨道转移到Ce 4f轨道,从而抑制了Cu原子周围的电子富集。这些变化调节了Cu的电子结构,减小了相邻Cu原子之间的距离,优化了表面吸附CO (*CO)的结合能,降低了*CO二聚化反应的能垒。结果表明,La1.95Ce0.05CuO4催化剂对C2+产物的法拉第效率高达81%,并且在50 h的运行时间内保持较高的稳定性。这项工作强调了Ce掺杂在稳定Cuδ+位点从而增强C-C耦合方面的独特作用,为设计高效的eCO2RR催化剂提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stabilizing Oxidation State of Cu via Ce Doping into La2CuO4 for Enhanced Electroreduction of CO2 to Multicarbon Products

Stabilizing Oxidation State of Cu via Ce Doping into La2CuO4 for Enhanced Electroreduction of CO2 to Multicarbon Products

Stabilizing oxidation state of Cu (Cuδ+, δ > 0) sites is the key-enabling issue for electrocatalytic carbon dioxide (CO2) reduction reaction (eCO2RR) to multicarbon (C2+) products. The present study addresses this challenge by introducing cerium (Ce) doping into La2CuO4. The Ce doping facilitates fd orbital coupling between Ce 4f and Cu 3d orbitals, suppressing electron enrichment around Cu atoms by transferring electrons from Cu 3d orbitals to Ce 4f orbitals via a Cu−O−Ce chain. These changes modulate the electronic structure of Cu, reduce the distance between neighboring Cu atoms, optimize the binding energy of surface-adsorbed CO (*CO), and lower the reaction energy barrier for *CO dimerization. As a result, the La1.95Ce0.05CuO4 catalyst achieves a Faradaic efficiency up to 81% for C2+ products and maintains high stability over 50 h operation. This work highlights the unique role of Ce doping in stabilizing Cuδ+ sites and hence enhancing C−C coupling, providing a pathway for designing efficient catalysts for eCO2RR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信