来自胰腺癌细胞的细胞外囊泡包装Linc-ZNF25-1促进胰腺星状细胞摄取天冬酰胺以促进化疗耐药。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Miao Yu, Mingxin Su, Zhenfeng Tian, Lele Pan, Zongmeng Li, Enlai Huang, Yinting Chen
{"title":"来自胰腺癌细胞的细胞外囊泡包装Linc-ZNF25-1促进胰腺星状细胞摄取天冬酰胺以促进化疗耐药。","authors":"Miao Yu,&nbsp;Mingxin Su,&nbsp;Zhenfeng Tian,&nbsp;Lele Pan,&nbsp;Zongmeng Li,&nbsp;Enlai Huang,&nbsp;Yinting Chen","doi":"10.1002/advs.202413439","DOIUrl":null,"url":null,"abstract":"<p>Extensive fibrous stroma plays an important role in gemcitabine (GEM) resistance. However, the mechanism by which pancreatic cancer cells interact with pancreatic stellate cells (PSCs) to promote GEM resistance remains unclear. This study investigates the role of metabolic crosstalk between these two cells in inducing GEM resistance. Extracellular vesicles (EVs) of parental and GEM-resistant pancreatic cancer cells are extracted and performed metabolic assays and long noncoding RNA (lncRNA) sequencing. Pancreatic cancer cell-derived EVs promote PSCs activation and extracellular matrix formation, and GEM-resistant pancreatic cancer cells produce more asparagine (Asn), favoring PSCs activation. Mechanistically, pancreatic cancer cell-derived EVs mediate linc-ZNF25-1 to promote Asn uptake via the IGF2BP3/c-Myc/SLC1A5 pathway in PSCs. In addition, mouse models elucidate the oncogenic function of linc-ZNF25-1 and the enhanced therapeutic effect of asparaginase (L-ASNase) in combination with GEM in pancreatic cancer. This study demonstrates that pancreatic cancer cell-derived EVs promote the uptake of Asn released from pancreatic cancer cells through the upregulation of SLC1A5 in PSCs, facilitating PSCs activation and pancreatic cancer resistance to GEM. L-ASNase in combination with GEM is a potential therapeutic strategy for targeting stromal cells to enhance the efficacy of chemotherapeutic agents against pancreatic cancer.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 16","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202413439","citationCount":"0","resultStr":"{\"title\":\"Extracellular Vesicle-Packaged Linc-ZNF25-1 from Pancreatic Cancer Cell Promotes Pancreatic Stellate Cell Uptake of Asparagine to Advance Chemoresistance\",\"authors\":\"Miao Yu,&nbsp;Mingxin Su,&nbsp;Zhenfeng Tian,&nbsp;Lele Pan,&nbsp;Zongmeng Li,&nbsp;Enlai Huang,&nbsp;Yinting Chen\",\"doi\":\"10.1002/advs.202413439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extensive fibrous stroma plays an important role in gemcitabine (GEM) resistance. However, the mechanism by which pancreatic cancer cells interact with pancreatic stellate cells (PSCs) to promote GEM resistance remains unclear. This study investigates the role of metabolic crosstalk between these two cells in inducing GEM resistance. Extracellular vesicles (EVs) of parental and GEM-resistant pancreatic cancer cells are extracted and performed metabolic assays and long noncoding RNA (lncRNA) sequencing. Pancreatic cancer cell-derived EVs promote PSCs activation and extracellular matrix formation, and GEM-resistant pancreatic cancer cells produce more asparagine (Asn), favoring PSCs activation. Mechanistically, pancreatic cancer cell-derived EVs mediate linc-ZNF25-1 to promote Asn uptake via the IGF2BP3/c-Myc/SLC1A5 pathway in PSCs. In addition, mouse models elucidate the oncogenic function of linc-ZNF25-1 and the enhanced therapeutic effect of asparaginase (L-ASNase) in combination with GEM in pancreatic cancer. This study demonstrates that pancreatic cancer cell-derived EVs promote the uptake of Asn released from pancreatic cancer cells through the upregulation of SLC1A5 in PSCs, facilitating PSCs activation and pancreatic cancer resistance to GEM. L-ASNase in combination with GEM is a potential therapeutic strategy for targeting stromal cells to enhance the efficacy of chemotherapeutic agents against pancreatic cancer.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 16\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202413439\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202413439\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202413439","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

广泛的纤维间质在吉西他滨耐药中起重要作用。然而,胰腺癌细胞与胰腺星状细胞(PSCs)相互作用促进GEM耐药的机制尚不清楚。本研究探讨了这两种细胞之间的代谢串扰在诱导GEM抗性中的作用。提取亲代和抗gem胰腺癌细胞的细胞外囊泡(ev)并进行代谢测定和长链非编码RNA (lncRNA)测序。胰腺癌细胞源性ev促进PSCs激活和细胞外基质形成,抗gem胰腺癌细胞产生更多天冬酰胺(Asn),有利于PSCs激活。在机制上,胰腺癌细胞衍生的ev介导linc-ZNF25-1,通过IGF2BP3/c-Myc/SLC1A5途径促进psc中Asn摄取。此外,小鼠模型阐明了linc-ZNF25-1的致癌功能以及天冬酰胺酶(L-ASNase)联合GEM对胰腺癌的增强治疗作用。本研究表明,胰腺癌细胞源性ev通过上调PSCs中SLC1A5的表达,促进胰腺癌细胞释放的Asn的摄取,促进PSCs的活化和胰腺癌对GEM的耐药。L-ASNase联合GEM是一种潜在的靶向间质细胞的治疗策略,可以提高化疗药物对胰腺癌的疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Extracellular Vesicle-Packaged Linc-ZNF25-1 from Pancreatic Cancer Cell Promotes Pancreatic Stellate Cell Uptake of Asparagine to Advance Chemoresistance

Extracellular Vesicle-Packaged Linc-ZNF25-1 from Pancreatic Cancer Cell Promotes Pancreatic Stellate Cell Uptake of Asparagine to Advance Chemoresistance

Extracellular Vesicle-Packaged Linc-ZNF25-1 from Pancreatic Cancer Cell Promotes Pancreatic Stellate Cell Uptake of Asparagine to Advance Chemoresistance

Extracellular Vesicle-Packaged Linc-ZNF25-1 from Pancreatic Cancer Cell Promotes Pancreatic Stellate Cell Uptake of Asparagine to Advance Chemoresistance

Extracellular Vesicle-Packaged Linc-ZNF25-1 from Pancreatic Cancer Cell Promotes Pancreatic Stellate Cell Uptake of Asparagine to Advance Chemoresistance

Extensive fibrous stroma plays an important role in gemcitabine (GEM) resistance. However, the mechanism by which pancreatic cancer cells interact with pancreatic stellate cells (PSCs) to promote GEM resistance remains unclear. This study investigates the role of metabolic crosstalk between these two cells in inducing GEM resistance. Extracellular vesicles (EVs) of parental and GEM-resistant pancreatic cancer cells are extracted and performed metabolic assays and long noncoding RNA (lncRNA) sequencing. Pancreatic cancer cell-derived EVs promote PSCs activation and extracellular matrix formation, and GEM-resistant pancreatic cancer cells produce more asparagine (Asn), favoring PSCs activation. Mechanistically, pancreatic cancer cell-derived EVs mediate linc-ZNF25-1 to promote Asn uptake via the IGF2BP3/c-Myc/SLC1A5 pathway in PSCs. In addition, mouse models elucidate the oncogenic function of linc-ZNF25-1 and the enhanced therapeutic effect of asparaginase (L-ASNase) in combination with GEM in pancreatic cancer. This study demonstrates that pancreatic cancer cell-derived EVs promote the uptake of Asn released from pancreatic cancer cells through the upregulation of SLC1A5 in PSCs, facilitating PSCs activation and pancreatic cancer resistance to GEM. L-ASNase in combination with GEM is a potential therapeutic strategy for targeting stromal cells to enhance the efficacy of chemotherapeutic agents against pancreatic cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信