Jiho Nam, Hyunmin Woo, Jihye Yang, Seok Jung Kim, Kwang Pyo Lee, Ji Hoon Yu, Tae Joo Park, Seong-il Eyun, Siyoung Yang
{"title":"阻断ZMIZ1-GATA4轴调控使衰老软骨恢复青春。","authors":"Jiho Nam, Hyunmin Woo, Jihye Yang, Seok Jung Kim, Kwang Pyo Lee, Ji Hoon Yu, Tae Joo Park, Seong-il Eyun, Siyoung Yang","doi":"10.1002/advs.202404311","DOIUrl":null,"url":null,"abstract":"<p>Susceptibility to cartilage degeneration increases in an age-dependent manner and older cartilage exhibits increased catabolic factor expression leading to osteoarthritis (OA). While inhibition of cellular senescence can prevent age-related diseases, the understanding of the regulators governing cartilage senescence and the potential for senolytic intervention remains limited. Here, in vitro and in vivo results are reported, demonstrating for the first time that the transcriptional regulator, ZMIZ1, is upregulated in aged and OA cartilage, and that it acts through GATA4 to accelerate chondrocyte senescence and trigger cartilage deterioration. Furthermore, it is shown that K-7174 interferes with the ZMIZ1-GATA4 interaction and effectively hampers cartilage senescence and OA. It is proposed that inhibition of the ZMIZ1-GATA4 axis could be a valuable strategy for eliminating senescent chondrocytes and impeding OA development and that the relevant inhibitor, K-7174, could potentially be developed as a senolytic drug for managing cartilage senescence and age-related degeneration.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 16","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202404311","citationCount":"0","resultStr":"{\"title\":\"Blockade of ZMIZ1-GATA4 Axis Regulation Restores Youthfulness to Aged Cartilage\",\"authors\":\"Jiho Nam, Hyunmin Woo, Jihye Yang, Seok Jung Kim, Kwang Pyo Lee, Ji Hoon Yu, Tae Joo Park, Seong-il Eyun, Siyoung Yang\",\"doi\":\"10.1002/advs.202404311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Susceptibility to cartilage degeneration increases in an age-dependent manner and older cartilage exhibits increased catabolic factor expression leading to osteoarthritis (OA). While inhibition of cellular senescence can prevent age-related diseases, the understanding of the regulators governing cartilage senescence and the potential for senolytic intervention remains limited. Here, in vitro and in vivo results are reported, demonstrating for the first time that the transcriptional regulator, ZMIZ1, is upregulated in aged and OA cartilage, and that it acts through GATA4 to accelerate chondrocyte senescence and trigger cartilage deterioration. Furthermore, it is shown that K-7174 interferes with the ZMIZ1-GATA4 interaction and effectively hampers cartilage senescence and OA. It is proposed that inhibition of the ZMIZ1-GATA4 axis could be a valuable strategy for eliminating senescent chondrocytes and impeding OA development and that the relevant inhibitor, K-7174, could potentially be developed as a senolytic drug for managing cartilage senescence and age-related degeneration.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 16\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202404311\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202404311\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202404311","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Blockade of ZMIZ1-GATA4 Axis Regulation Restores Youthfulness to Aged Cartilage
Susceptibility to cartilage degeneration increases in an age-dependent manner and older cartilage exhibits increased catabolic factor expression leading to osteoarthritis (OA). While inhibition of cellular senescence can prevent age-related diseases, the understanding of the regulators governing cartilage senescence and the potential for senolytic intervention remains limited. Here, in vitro and in vivo results are reported, demonstrating for the first time that the transcriptional regulator, ZMIZ1, is upregulated in aged and OA cartilage, and that it acts through GATA4 to accelerate chondrocyte senescence and trigger cartilage deterioration. Furthermore, it is shown that K-7174 interferes with the ZMIZ1-GATA4 interaction and effectively hampers cartilage senescence and OA. It is proposed that inhibition of the ZMIZ1-GATA4 axis could be a valuable strategy for eliminating senescent chondrocytes and impeding OA development and that the relevant inhibitor, K-7174, could potentially be developed as a senolytic drug for managing cartilage senescence and age-related degeneration.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.