{"title":"Barkley模型n -前解和n -后解的稳定性","authors":"Christian Kuehn, Pascal Sedlmeier","doi":"10.1002/gamm.70001","DOIUrl":null,"url":null,"abstract":"<p>In this article, we establish for an intermediate Reynolds number domain the stability of <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n </mrow>\n <annotation>$$ N $$</annotation>\n </semantics></math>-front and <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n </mrow>\n <annotation>$$ N $$</annotation>\n </semantics></math>-back solutions for each <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>></mo>\n <mn>1</mn>\n </mrow>\n <annotation>$$ N>1 $$</annotation>\n </semantics></math> corresponding to traveling waves, in an experimentally validated model for the transition to turbulence in pipe flow proposed in <i>[Barkley et al., Nature 526(7574):550-553, 2015]</i>. We base our work on the existence analysis of a heteroclinic loop between a turbulent and a laminar equilibrium proved by Engel, Kuehn and de Rijk in <i>Engel, Kuehn, de Rijk, Nonlinearity 35:5903, 2022</i>, as well as some results from this work. The stability proof follows the verification of a set of abstract stability hypotheses stated by Sandstede in <i>[SIAM Journal on Mathematical Analysis 29.1 (1998), pp. 183-207]</i> for traveling waves motivated by the FitzHugh–Nagumo equations. In particular, this completes the first detailed analysis of Engel, Kuehn and de Rijk in <i>[Engel, Kuehn, de Rijk, Nonlinearity 35:5903, 2022]</i> leading to a complete existence and stability statement that nicely fits within the abstract framework of waves generated by twisted heteroclinic loops.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.70001","citationCount":"0","resultStr":"{\"title\":\"Stability of N-front and N-back solutions in the Barkley model\",\"authors\":\"Christian Kuehn, Pascal Sedlmeier\",\"doi\":\"10.1002/gamm.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we establish for an intermediate Reynolds number domain the stability of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$$ N $$</annotation>\\n </semantics></math>-front and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$$ N $$</annotation>\\n </semantics></math>-back solutions for each <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>></mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$$ N>1 $$</annotation>\\n </semantics></math> corresponding to traveling waves, in an experimentally validated model for the transition to turbulence in pipe flow proposed in <i>[Barkley et al., Nature 526(7574):550-553, 2015]</i>. We base our work on the existence analysis of a heteroclinic loop between a turbulent and a laminar equilibrium proved by Engel, Kuehn and de Rijk in <i>Engel, Kuehn, de Rijk, Nonlinearity 35:5903, 2022</i>, as well as some results from this work. The stability proof follows the verification of a set of abstract stability hypotheses stated by Sandstede in <i>[SIAM Journal on Mathematical Analysis 29.1 (1998), pp. 183-207]</i> for traveling waves motivated by the FitzHugh–Nagumo equations. In particular, this completes the first detailed analysis of Engel, Kuehn and de Rijk in <i>[Engel, Kuehn, de Rijk, Nonlinearity 35:5903, 2022]</i> leading to a complete existence and stability statement that nicely fits within the abstract framework of waves generated by twisted heteroclinic loops.</p>\",\"PeriodicalId\":53634,\"journal\":{\"name\":\"GAMM Mitteilungen\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.70001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GAMM Mitteilungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gamm.70001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.70001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们建立了在中间雷诺数域中N $$ N $$ -前解和N $$ N $$ -后解的稳定性;1 $$ N>1 $$对应于行波,在Barkley et al., Nature 526(7574):550-553, 2015中提出的管道流动过渡到湍流的实验验证模型中[j]。我们的工作基于Engel, Kuehn和de Rijk在Engel, Kuehn, de Rijk, Nonlinearity 35:5903, 2022中证明的湍流和层流平衡之间的异斜环的存在性分析,以及该工作的一些结果。稳定性证明遵循Sandstede在[SIAM Journal on Mathematical Analysis 29.1 (1998), pp. 183-207]中对FitzHugh-Nagumo方程驱动的行波提出的一组抽象稳定性假设的验证。特别是,这完成了Engel, Kuehn, de Rijk在[Engel, Kuehn, de Rijk, Nonlinearity 35:5903,2022]中对Engel, Kuehn和de Rijk的第一次详细分析,从而得出了一个完整的存在性和稳定性陈述,该陈述很好地符合扭曲异斜环产生的波的抽象框架。
Stability of N-front and N-back solutions in the Barkley model
In this article, we establish for an intermediate Reynolds number domain the stability of -front and -back solutions for each corresponding to traveling waves, in an experimentally validated model for the transition to turbulence in pipe flow proposed in [Barkley et al., Nature 526(7574):550-553, 2015]. We base our work on the existence analysis of a heteroclinic loop between a turbulent and a laminar equilibrium proved by Engel, Kuehn and de Rijk in Engel, Kuehn, de Rijk, Nonlinearity 35:5903, 2022, as well as some results from this work. The stability proof follows the verification of a set of abstract stability hypotheses stated by Sandstede in [SIAM Journal on Mathematical Analysis 29.1 (1998), pp. 183-207] for traveling waves motivated by the FitzHugh–Nagumo equations. In particular, this completes the first detailed analysis of Engel, Kuehn and de Rijk in [Engel, Kuehn, de Rijk, Nonlinearity 35:5903, 2022] leading to a complete existence and stability statement that nicely fits within the abstract framework of waves generated by twisted heteroclinic loops.