李梅减轻高尿酸血症肾损伤:网络药理学和实验模型的见解

IF 1.8 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS
ShaoJun Zheng, Sheng Li, XiaoHan Diao, NaiDong Chen
{"title":"李梅减轻高尿酸血症肾损伤:网络药理学和实验模型的见解","authors":"ShaoJun Zheng,&nbsp;Sheng Li,&nbsp;XiaoHan Diao,&nbsp;NaiDong Chen","doi":"10.1002/bmc.70035","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p><i>Prunus mume</i> (PM), the dried flower bud of a Rosaceae plant, has a long history of use for its liver-soothing, depression-relieving, and appetite-stimulating effects. Recently, PM has gained attention for its anti-inflammatory, antioxidant, and uric acid-lowering properties. The chemical composition of PM was analyzed using network pharmacology and liquid chromatography–mass spectrometry (LC-MS). The therapeutic potential of PM for hyperuricemia-induced kidney damage was evaluated in a quail model. Antioxidant activity in an HK-2 cell model of hyperuricemia was assessed by measuring the levels of MDA, SOD, and GSH. Additionally, the anti-inflammatory potential was examined using ELISA to measure TNF-α and IL-6 levels. Western blotting was employed to study the effects on URAT1, GLUT9, and the PI3K/AKT pathway. LC-MS identified 284 compounds in PM, with 35 predicted active ingredients. The quail model demonstrated PM's protective effects on the kidneys under hyperuricemic conditions. In vitro, PM reduced oxidative stress and lowered TNF-α and IL-6 levels. It also modulated URAT1 and GLUT9 expression and influenced the PI3K/AKT pathway. PM shows promise in protecting kidneys from hyperuricemia-induced damage, likely through its anti-inflammatory and antioxidant activities, as well as the regulation of urate transport proteins and the PI3K/AKT pathway.</p>\n </div>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prunus mume Alleviates Hyperuricemic Renal Injury: Insights From Network Pharmacology and Experimental Models\",\"authors\":\"ShaoJun Zheng,&nbsp;Sheng Li,&nbsp;XiaoHan Diao,&nbsp;NaiDong Chen\",\"doi\":\"10.1002/bmc.70035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p><i>Prunus mume</i> (PM), the dried flower bud of a Rosaceae plant, has a long history of use for its liver-soothing, depression-relieving, and appetite-stimulating effects. Recently, PM has gained attention for its anti-inflammatory, antioxidant, and uric acid-lowering properties. The chemical composition of PM was analyzed using network pharmacology and liquid chromatography–mass spectrometry (LC-MS). The therapeutic potential of PM for hyperuricemia-induced kidney damage was evaluated in a quail model. Antioxidant activity in an HK-2 cell model of hyperuricemia was assessed by measuring the levels of MDA, SOD, and GSH. Additionally, the anti-inflammatory potential was examined using ELISA to measure TNF-α and IL-6 levels. Western blotting was employed to study the effects on URAT1, GLUT9, and the PI3K/AKT pathway. LC-MS identified 284 compounds in PM, with 35 predicted active ingredients. The quail model demonstrated PM's protective effects on the kidneys under hyperuricemic conditions. In vitro, PM reduced oxidative stress and lowered TNF-α and IL-6 levels. It also modulated URAT1 and GLUT9 expression and influenced the PI3K/AKT pathway. PM shows promise in protecting kidneys from hyperuricemia-induced damage, likely through its anti-inflammatory and antioxidant activities, as well as the regulation of urate transport proteins and the PI3K/AKT pathway.</p>\\n </div>\",\"PeriodicalId\":8861,\"journal\":{\"name\":\"Biomedical Chromatography\",\"volume\":\"39 4\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Chromatography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bmc.70035\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmc.70035","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

梅花(PM)是蔷薇科植物的干花芽,具有舒缓肝脏、缓解抑郁和刺激食欲的作用,有着悠久的使用历史。最近,PM因其抗炎、抗氧化和降尿酸的特性而受到关注。采用网络药理学和液相色谱-质谱(LC-MS)分析了PM的化学成分。在鹌鹑模型中评估了PM对高尿酸血症引起的肾损伤的治疗潜力。通过测量MDA、SOD和GSH的水平来评估高尿酸血症HK-2细胞模型的抗氧化活性。此外,采用ELISA检测TNF-α和IL-6水平,检测抗炎潜能。Western blotting检测其对URAT1、GLUT9和PI3K/AKT通路的影响。LC-MS鉴定出PM中的284种化合物,预测有效成分35种。鹌鹑模型显示PM在高尿酸血症条件下对肾脏的保护作用。在体外,PM可减轻氧化应激,降低TNF-α和IL-6水平。它还能调节URAT1和GLUT9的表达,影响PI3K/AKT通路。PM可能通过其抗炎和抗氧化活性,以及对尿酸转运蛋白和PI3K/AKT通路的调节,在保护肾脏免受高尿酸血症引起的损伤方面显示出前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prunus mume Alleviates Hyperuricemic Renal Injury: Insights From Network Pharmacology and Experimental Models

Prunus mume (PM), the dried flower bud of a Rosaceae plant, has a long history of use for its liver-soothing, depression-relieving, and appetite-stimulating effects. Recently, PM has gained attention for its anti-inflammatory, antioxidant, and uric acid-lowering properties. The chemical composition of PM was analyzed using network pharmacology and liquid chromatography–mass spectrometry (LC-MS). The therapeutic potential of PM for hyperuricemia-induced kidney damage was evaluated in a quail model. Antioxidant activity in an HK-2 cell model of hyperuricemia was assessed by measuring the levels of MDA, SOD, and GSH. Additionally, the anti-inflammatory potential was examined using ELISA to measure TNF-α and IL-6 levels. Western blotting was employed to study the effects on URAT1, GLUT9, and the PI3K/AKT pathway. LC-MS identified 284 compounds in PM, with 35 predicted active ingredients. The quail model demonstrated PM's protective effects on the kidneys under hyperuricemic conditions. In vitro, PM reduced oxidative stress and lowered TNF-α and IL-6 levels. It also modulated URAT1 and GLUT9 expression and influenced the PI3K/AKT pathway. PM shows promise in protecting kidneys from hyperuricemia-induced damage, likely through its anti-inflammatory and antioxidant activities, as well as the regulation of urate transport proteins and the PI3K/AKT pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Chromatography
Biomedical Chromatography 生物-分析化学
CiteScore
3.60
自引率
5.60%
发文量
268
审稿时长
2.3 months
期刊介绍: Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信