{"title":"带延迟算子的非经典扩散方程的回拉吸引子","authors":"Bin Yang, Yuming Qin, Alain Miranville, Ke Wang","doi":"10.1111/sapm.70039","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we consider the asymptotic behavior of weak solutions for nonclassical nonautonomous diffusion equations with a delay operator in time-dependent spaces when the nonlinear function <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> satisfies subcritical exponent growth conditions, the delay operator <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>(</mo>\n <mi>t</mi>\n <mo>,</mo>\n <msub>\n <mi>u</mi>\n <mi>t</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\varphi (t, u_t)$</annotation>\n </semantics></math> contains some hereditary characteristics, and the external force <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>∈</mo>\n <msubsup>\n <mi>L</mi>\n <mrow>\n <mi>l</mi>\n <mi>o</mi>\n <mi>c</mi>\n </mrow>\n <mn>2</mn>\n </msubsup>\n <mfenced>\n <mi>R</mi>\n <mo>;</mo>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mfenced>\n </mrow>\n <annotation>$k \\in L_{l o c}^{2}\\left(\\mathbb {R}; L^{2}(\\Omega)\\right)$</annotation>\n </semantics></math>. First, we prove the well-posedness of solutions by using the Faedo–Galerkin approximation method. Then after a series of elaborate energy estimates and calculations, we establish the existence and regularity of pullback attractors in time-dependent spaces <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mrow>\n <msub>\n <mi>H</mi>\n <mi>t</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n </msub>\n <annotation>$C_{\\mathcal {H}_{t}(\\Omega)}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mrow>\n <msubsup>\n <mi>H</mi>\n <mi>t</mi>\n <mn>1</mn>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n </msub>\n <annotation>$C_{\\mathcal {H}^{1}_{t}(\\Omega)}$</annotation>\n </semantics></math>, respectively.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pullback Attractors for Nonclassical Diffusion Equations With a Delay Operator\",\"authors\":\"Bin Yang, Yuming Qin, Alain Miranville, Ke Wang\",\"doi\":\"10.1111/sapm.70039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, we consider the asymptotic behavior of weak solutions for nonclassical nonautonomous diffusion equations with a delay operator in time-dependent spaces when the nonlinear function <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> satisfies subcritical exponent growth conditions, the delay operator <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>φ</mi>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>u</mi>\\n <mi>t</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\varphi (t, u_t)$</annotation>\\n </semantics></math> contains some hereditary characteristics, and the external force <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>∈</mo>\\n <msubsup>\\n <mi>L</mi>\\n <mrow>\\n <mi>l</mi>\\n <mi>o</mi>\\n <mi>c</mi>\\n </mrow>\\n <mn>2</mn>\\n </msubsup>\\n <mfenced>\\n <mi>R</mi>\\n <mo>;</mo>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <annotation>$k \\\\in L_{l o c}^{2}\\\\left(\\\\mathbb {R}; L^{2}(\\\\Omega)\\\\right)$</annotation>\\n </semantics></math>. First, we prove the well-posedness of solutions by using the Faedo–Galerkin approximation method. Then after a series of elaborate energy estimates and calculations, we establish the existence and regularity of pullback attractors in time-dependent spaces <span></span><math>\\n <semantics>\\n <msub>\\n <mi>C</mi>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mi>t</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </msub>\\n <annotation>$C_{\\\\mathcal {H}_{t}(\\\\Omega)}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>C</mi>\\n <mrow>\\n <msubsup>\\n <mi>H</mi>\\n <mi>t</mi>\\n <mn>1</mn>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </msub>\\n <annotation>$C_{\\\\mathcal {H}^{1}_{t}(\\\\Omega)}$</annotation>\\n </semantics></math>, respectively.</p></div>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"154 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70039\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70039","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了一类具有时滞算子的非经典非自治扩散方程在时变空间中,当非线性函数g $g$满足次临界指数增长条件、时滞算子φ (t)、U t) $\varphi (t, u_t)$包含一些遗传特征,,外力k∈L L o c 2r;l2 (Ω) $k \in L_{l o c}^{2}\left(\mathbb {R}; L^{2}(\Omega)\right)$。首先,我们用Faedo-Galerkin近似方法证明了解的适定性。然后经过一系列详尽的能量估算和计算,我们建立了在时变空间C H t (Ω) $C_{\mathcal {H}_{t}(\Omega)}$和CH t1 (Ω) $C_{\mathcal {H}^{1}_{t}(\Omega)}$。
Pullback Attractors for Nonclassical Diffusion Equations With a Delay Operator
In this paper, we consider the asymptotic behavior of weak solutions for nonclassical nonautonomous diffusion equations with a delay operator in time-dependent spaces when the nonlinear function satisfies subcritical exponent growth conditions, the delay operator contains some hereditary characteristics, and the external force . First, we prove the well-posedness of solutions by using the Faedo–Galerkin approximation method. Then after a series of elaborate energy estimates and calculations, we establish the existence and regularity of pullback attractors in time-dependent spaces and , respectively.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.