带延迟算子的非经典扩散方程的回拉吸引子

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Bin Yang, Yuming Qin, Alain Miranville, Ke Wang
{"title":"带延迟算子的非经典扩散方程的回拉吸引子","authors":"Bin Yang,&nbsp;Yuming Qin,&nbsp;Alain Miranville,&nbsp;Ke Wang","doi":"10.1111/sapm.70039","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we consider the asymptotic behavior of weak solutions for nonclassical nonautonomous diffusion equations with a delay operator in time-dependent spaces when the nonlinear function <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> satisfies subcritical exponent growth conditions, the delay operator <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>(</mo>\n <mi>t</mi>\n <mo>,</mo>\n <msub>\n <mi>u</mi>\n <mi>t</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\varphi (t, u_t)$</annotation>\n </semantics></math> contains some hereditary characteristics, and the external force <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>∈</mo>\n <msubsup>\n <mi>L</mi>\n <mrow>\n <mi>l</mi>\n <mi>o</mi>\n <mi>c</mi>\n </mrow>\n <mn>2</mn>\n </msubsup>\n <mfenced>\n <mi>R</mi>\n <mo>;</mo>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mfenced>\n </mrow>\n <annotation>$k \\in L_{l o c}^{2}\\left(\\mathbb {R}; L^{2}(\\Omega)\\right)$</annotation>\n </semantics></math>. First, we prove the well-posedness of solutions by using the Faedo–Galerkin approximation method. Then after a series of elaborate energy estimates and calculations, we establish the existence and regularity of pullback attractors in time-dependent spaces <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mrow>\n <msub>\n <mi>H</mi>\n <mi>t</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n </msub>\n <annotation>$C_{\\mathcal {H}_{t}(\\Omega)}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mrow>\n <msubsup>\n <mi>H</mi>\n <mi>t</mi>\n <mn>1</mn>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n </msub>\n <annotation>$C_{\\mathcal {H}^{1}_{t}(\\Omega)}$</annotation>\n </semantics></math>, respectively.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pullback Attractors for Nonclassical Diffusion Equations With a Delay Operator\",\"authors\":\"Bin Yang,&nbsp;Yuming Qin,&nbsp;Alain Miranville,&nbsp;Ke Wang\",\"doi\":\"10.1111/sapm.70039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, we consider the asymptotic behavior of weak solutions for nonclassical nonautonomous diffusion equations with a delay operator in time-dependent spaces when the nonlinear function <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> satisfies subcritical exponent growth conditions, the delay operator <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>φ</mi>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>u</mi>\\n <mi>t</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\varphi (t, u_t)$</annotation>\\n </semantics></math> contains some hereditary characteristics, and the external force <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>∈</mo>\\n <msubsup>\\n <mi>L</mi>\\n <mrow>\\n <mi>l</mi>\\n <mi>o</mi>\\n <mi>c</mi>\\n </mrow>\\n <mn>2</mn>\\n </msubsup>\\n <mfenced>\\n <mi>R</mi>\\n <mo>;</mo>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <annotation>$k \\\\in L_{l o c}^{2}\\\\left(\\\\mathbb {R}; L^{2}(\\\\Omega)\\\\right)$</annotation>\\n </semantics></math>. First, we prove the well-posedness of solutions by using the Faedo–Galerkin approximation method. Then after a series of elaborate energy estimates and calculations, we establish the existence and regularity of pullback attractors in time-dependent spaces <span></span><math>\\n <semantics>\\n <msub>\\n <mi>C</mi>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mi>t</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </msub>\\n <annotation>$C_{\\\\mathcal {H}_{t}(\\\\Omega)}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>C</mi>\\n <mrow>\\n <msubsup>\\n <mi>H</mi>\\n <mi>t</mi>\\n <mn>1</mn>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </msub>\\n <annotation>$C_{\\\\mathcal {H}^{1}_{t}(\\\\Omega)}$</annotation>\\n </semantics></math>, respectively.</p></div>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"154 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70039\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70039","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有时滞算子的非经典非自治扩散方程在时变空间中,当非线性函数g $g$满足次临界指数增长条件、时滞算子φ (t)、U t) $\varphi (t, u_t)$包含一些遗传特征,,外力k∈L L o c 2r;l2 (Ω) $k \in L_{l o c}^{2}\left(\mathbb {R}; L^{2}(\Omega)\right)$。首先,我们用Faedo-Galerkin近似方法证明了解的适定性。然后经过一系列详尽的能量估算和计算,我们建立了在时变空间C H t (Ω) $C_{\mathcal {H}_{t}(\Omega)}$和CH t1 (Ω) $C_{\mathcal {H}^{1}_{t}(\Omega)}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pullback Attractors for Nonclassical Diffusion Equations With a Delay Operator

In this paper, we consider the asymptotic behavior of weak solutions for nonclassical nonautonomous diffusion equations with a delay operator in time-dependent spaces when the nonlinear function g $g$ satisfies subcritical exponent growth conditions, the delay operator φ ( t , u t ) $\varphi (t, u_t)$ contains some hereditary characteristics, and the external force k L l o c 2 R ; L 2 ( Ω ) $k \in L_{l o c}^{2}\left(\mathbb {R}; L^{2}(\Omega)\right)$ . First, we prove the well-posedness of solutions by using the Faedo–Galerkin approximation method. Then after a series of elaborate energy estimates and calculations, we establish the existence and regularity of pullback attractors in time-dependent spaces C H t ( Ω ) $C_{\mathcal {H}_{t}(\Omega)}$ and C H t 1 ( Ω ) $C_{\mathcal {H}^{1}_{t}(\Omega)}$ , respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信