具有大耦合的\(C^2\) cos型拟周期Schrödinger共环Lyapunov指数的精确规律性

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Jiahao Xu, Lingrui Ge, Yiqian Wang
{"title":"具有大耦合的\\(C^2\\) cos型拟周期Schrödinger共环Lyapunov指数的精确规律性","authors":"Jiahao Xu,&nbsp;Lingrui Ge,&nbsp;Yiqian Wang","doi":"10.1007/s00220-025-05258-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the regularity of the Lyapunov exponent for quasiperiodic Schrödinger cocycles with <span>\\(C^2\\)</span> cos-type potentials, large coupling constants, and a fixed Diophantine frequency. We obtain the absolute continuity of the Lyapunov exponent. Moreover, we prove the Lyapunov exponent is <span>\\(\\frac{1}{2}\\)</span>-Hölder continuous. Furthermore, for any given <span>\\(r\\in (\\frac{1}{2}, 1)\\)</span>, we can find some energy in the spectrum where the local regularity of the Lyapunov exponent is between <span>\\((r-\\epsilon )\\)</span>-Hölder continuity and <span>\\((r+\\epsilon )\\)</span>-Hölder continuity.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Precise Regularity of the Lyapunov Exponent for \\\\(C^2\\\\) Cos-Type Quasiperiodic Schrödinger Cocycles with Large Couplings\",\"authors\":\"Jiahao Xu,&nbsp;Lingrui Ge,&nbsp;Yiqian Wang\",\"doi\":\"10.1007/s00220-025-05258-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the regularity of the Lyapunov exponent for quasiperiodic Schrödinger cocycles with <span>\\\\(C^2\\\\)</span> cos-type potentials, large coupling constants, and a fixed Diophantine frequency. We obtain the absolute continuity of the Lyapunov exponent. Moreover, we prove the Lyapunov exponent is <span>\\\\(\\\\frac{1}{2}\\\\)</span>-Hölder continuous. Furthermore, for any given <span>\\\\(r\\\\in (\\\\frac{1}{2}, 1)\\\\)</span>, we can find some energy in the spectrum where the local regularity of the Lyapunov exponent is between <span>\\\\((r-\\\\epsilon )\\\\)</span>-Hölder continuity and <span>\\\\((r+\\\\epsilon )\\\\)</span>-Hölder continuity.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05258-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05258-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有\(C^2\) cos型势、大耦合常数和固定丢芬图频率的准周期Schrödinger共环的Lyapunov指数的正则性。我们得到了李雅普诺夫指数的绝对连续性。并且证明了Lyapunov指数是\(\frac{1}{2}\) -Hölder连续的。此外,对于任意给定的\(r\in (\frac{1}{2}, 1)\),我们可以在谱中找到Lyapunov指数的局部正则性介于\((r-\epsilon )\) -Hölder连续性和\((r+\epsilon )\) -Hölder连续性之间的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Precise Regularity of the Lyapunov Exponent for \(C^2\) Cos-Type Quasiperiodic Schrödinger Cocycles with Large Couplings

In this paper, we study the regularity of the Lyapunov exponent for quasiperiodic Schrödinger cocycles with \(C^2\) cos-type potentials, large coupling constants, and a fixed Diophantine frequency. We obtain the absolute continuity of the Lyapunov exponent. Moreover, we prove the Lyapunov exponent is \(\frac{1}{2}\)-Hölder continuous. Furthermore, for any given \(r\in (\frac{1}{2}, 1)\), we can find some energy in the spectrum where the local regularity of the Lyapunov exponent is between \((r-\epsilon )\)-Hölder continuity and \((r+\epsilon )\)-Hölder continuity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信