活化能和电渗透对不对称通道中假塑性纳米流体蠕动流动的影响

IF 2.2 3区 工程技术 Q2 MECHANICS
P. Tamizharasi, Y. Akbar, A. Magesh
{"title":"活化能和电渗透对不对称通道中假塑性纳米流体蠕动流动的影响","authors":"P. Tamizharasi,&nbsp;Y. Akbar,&nbsp;A. Magesh","doi":"10.1007/s00419-025-02778-8","DOIUrl":null,"url":null,"abstract":"<div><p>The present research investigates the effects of activation energy and electroosmosis on the peristaltic transport of a pseudoplastic nanofluid flowing through an asymmetric, flexible microchannel. The analysis incorporates crucial factors, such as thermal radiation, magnetic field, thermophoresis, and Brownian motion. The governing mathematical model is simplified using the lubrication approximation. The resulting system of equations is then numerically solved using NDSolve in Mathematica. The impact of key fluid properties on electroosmotic flow is examined through graphical analysis. Results demonstrate that nanofluid velocity decreases with increasing Debye–Hückel parameter. Furthermore, fluid flow is reduced with higher pseudoplastic fluid parameters, while nanoparticle concentration diminishes with increasing temperature ratio parameters. Nanofluid temperature increases with an enhancement in the thermophoresis parameter.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of activation energy and electroosmosis on peristaltic flow of Pseudoplastic nanofluids in an asymmetric channel\",\"authors\":\"P. Tamizharasi,&nbsp;Y. Akbar,&nbsp;A. Magesh\",\"doi\":\"10.1007/s00419-025-02778-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present research investigates the effects of activation energy and electroosmosis on the peristaltic transport of a pseudoplastic nanofluid flowing through an asymmetric, flexible microchannel. The analysis incorporates crucial factors, such as thermal radiation, magnetic field, thermophoresis, and Brownian motion. The governing mathematical model is simplified using the lubrication approximation. The resulting system of equations is then numerically solved using NDSolve in Mathematica. The impact of key fluid properties on electroosmotic flow is examined through graphical analysis. Results demonstrate that nanofluid velocity decreases with increasing Debye–Hückel parameter. Furthermore, fluid flow is reduced with higher pseudoplastic fluid parameters, while nanoparticle concentration diminishes with increasing temperature ratio parameters. Nanofluid temperature increases with an enhancement in the thermophoresis parameter.</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"95 3\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-025-02778-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-025-02778-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了活化能和电渗透对假塑性纳米流体通过不对称柔性微通道的蠕动传输的影响。分析结合了关键因素,如热辐射、磁场、热泳动和布朗运动。采用润滑近似法简化了控制数学模型。然后使用Mathematica中的NDSolve对生成的方程组进行数值求解。通过图形分析考察了关键流体性质对电渗透流动的影响。结果表明,纳米流体速度随debye - h ckel参数的增大而减小。伪塑性流体参数越高,流体流量越小,纳米颗粒浓度随温度比参数的增加而减小。纳米流体温度随着热泳参数的增大而升高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of activation energy and electroosmosis on peristaltic flow of Pseudoplastic nanofluids in an asymmetric channel

The present research investigates the effects of activation energy and electroosmosis on the peristaltic transport of a pseudoplastic nanofluid flowing through an asymmetric, flexible microchannel. The analysis incorporates crucial factors, such as thermal radiation, magnetic field, thermophoresis, and Brownian motion. The governing mathematical model is simplified using the lubrication approximation. The resulting system of equations is then numerically solved using NDSolve in Mathematica. The impact of key fluid properties on electroosmotic flow is examined through graphical analysis. Results demonstrate that nanofluid velocity decreases with increasing Debye–Hückel parameter. Furthermore, fluid flow is reduced with higher pseudoplastic fluid parameters, while nanoparticle concentration diminishes with increasing temperature ratio parameters. Nanofluid temperature increases with an enhancement in the thermophoresis parameter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
10.70%
发文量
234
审稿时长
4-8 weeks
期刊介绍: Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信