{"title":"带循环修正的气泡壁速度","authors":"Andrii Dashko, Andreas Ekstedt","doi":"10.1007/JHEP03(2025)024","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the dynamics of the nucleating scalar field during the first-order phase transitions by incorporating one-loop corrections of classical fluctuations. We assume that a high-temperature expansion is valid — where the mass of the scalar field is significantly smaller than the temperature — so that we can treat the bubble-wall dynamics in a regime where quantum fluctuations can be integrated out. We present a systematic framework for calculating classical loop corrections to the wall speed; contrast our results with traditional methods based on the derivative expansion; show that the latent heat can differ from the effective-potential result; and discuss general hydrodynamic corrections. Finally, we show an application of the presented framework for a simple scalar field model, finding that the one-loop improvement decreases the wall speed and that an effective-potential approximation underestimates full one-loop corrections by about a factor of two.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)024.pdf","citationCount":"0","resultStr":"{\"title\":\"Bubble-wall speed with loop corrections\",\"authors\":\"Andrii Dashko, Andreas Ekstedt\",\"doi\":\"10.1007/JHEP03(2025)024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the dynamics of the nucleating scalar field during the first-order phase transitions by incorporating one-loop corrections of classical fluctuations. We assume that a high-temperature expansion is valid — where the mass of the scalar field is significantly smaller than the temperature — so that we can treat the bubble-wall dynamics in a regime where quantum fluctuations can be integrated out. We present a systematic framework for calculating classical loop corrections to the wall speed; contrast our results with traditional methods based on the derivative expansion; show that the latent heat can differ from the effective-potential result; and discuss general hydrodynamic corrections. Finally, we show an application of the presented framework for a simple scalar field model, finding that the one-loop improvement decreases the wall speed and that an effective-potential approximation underestimates full one-loop corrections by about a factor of two.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 3\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)024.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP03(2025)024\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP03(2025)024","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
In this paper, we investigate the dynamics of the nucleating scalar field during the first-order phase transitions by incorporating one-loop corrections of classical fluctuations. We assume that a high-temperature expansion is valid — where the mass of the scalar field is significantly smaller than the temperature — so that we can treat the bubble-wall dynamics in a regime where quantum fluctuations can be integrated out. We present a systematic framework for calculating classical loop corrections to the wall speed; contrast our results with traditional methods based on the derivative expansion; show that the latent heat can differ from the effective-potential result; and discuss general hydrodynamic corrections. Finally, we show an application of the presented framework for a simple scalar field model, finding that the one-loop improvement decreases the wall speed and that an effective-potential approximation underestimates full one-loop corrections by about a factor of two.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).