氟/溴/硒多杂原子取代双不对称电子受体用于邻二甲苯加工有机太阳能电池,效率为19.12%

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yibo Zhou  (, ), Guangyu Qi  (, ), Han Liu  (, ), Hairui Bai  (, ), Tengfei Li  (, ), Muhammad Hamza Maqsood, Chang Liu  (, ), Bohao Song  (, ), Na Chen  (, ), Guanghao Lu  (, ), Chao Gao  (, ), Yuhang Liu  (, ), Wenyan Su  (, ), Huiling Du  (, ), Ruijie Ma  (, ), Wei Ma  (, ), Qunping Fan  (, )
{"title":"氟/溴/硒多杂原子取代双不对称电子受体用于邻二甲苯加工有机太阳能电池,效率为19.12%","authors":"Yibo Zhou \n (,&nbsp;),&nbsp;Guangyu Qi \n (,&nbsp;),&nbsp;Han Liu \n (,&nbsp;),&nbsp;Hairui Bai \n (,&nbsp;),&nbsp;Tengfei Li \n (,&nbsp;),&nbsp;Muhammad Hamza Maqsood,&nbsp;Chang Liu \n (,&nbsp;),&nbsp;Bohao Song \n (,&nbsp;),&nbsp;Na Chen \n (,&nbsp;),&nbsp;Guanghao Lu \n (,&nbsp;),&nbsp;Chao Gao \n (,&nbsp;),&nbsp;Yuhang Liu \n (,&nbsp;),&nbsp;Wenyan Su \n (,&nbsp;),&nbsp;Huiling Du \n (,&nbsp;),&nbsp;Ruijie Ma \n (,&nbsp;),&nbsp;Wei Ma \n (,&nbsp;),&nbsp;Qunping Fan \n (,&nbsp;)","doi":"10.1007/s40843-024-3167-7","DOIUrl":null,"url":null,"abstract":"<div><p>The development of high-performance near-infrared (NIR) absorbing electron acceptors is a major challenge in achieving high short-circuit current density (<i>J</i><sub>SC</sub>) to increase power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, three new multi-heteroatomized Y-series acceptors (bi-asy-Y-Br, bi-asy-Y-FBr, and bi-asy-Y-FBrF) were developed by combining dual-asymmetric selenium-fused core and brominated end-groups with different numbers of fluorine substitutions. With gradually increasing fluorination, three acceptors exhibit red-shift absorption. Among them, bi-asy-Y-FBrF presents planar molecular geometry, the maximum average electrostatic potential, and the minimum molecular dipole moment, which are conducive to intramolecular packing and charge transport. Moreover, D18:bi-asy-Y-FBrF active layer presents higher crystallinity, more suitable phase separation, and reduced charge recombination compared to D18:bi-asy-Y-Br and D18:bi-asy-Y-FBr blends. Consequently, among theses binary OSCs, D18:bi-asy-Y-FBrF device achieves a higher PCE of 15.74% with an enhanced <i>J</i><sub>SC</sub> of 26.28 mA cm<sup>−2</sup>, while D18:bi-asy-Y-Br device obtains a moderate PCE of 15.04% with the highest open-circuit voltage (<i>V</i><sub>OC</sub>) of 0.926 V. Inspired by its high <i>V</i><sub>OC</sub> and complementary absorption with NIR-absorbing BTP-eC9 as acceptor, bi-asy-Y-Br is introduced into binary D18:BTP-eC9 to construct ternary OSCs, achieving a further boosted PCE of 19.12%, which is among the top values for the reported green solvent processed OSCs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 3","pages":"850 - 859"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40843-024-3167-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Fluorine/bromine/selenium multi-heteroatoms substituted dual-asymmetric electron acceptors for o-xylene processed organic solar cells with 19.12% efficiency\",\"authors\":\"Yibo Zhou \\n (,&nbsp;),&nbsp;Guangyu Qi \\n (,&nbsp;),&nbsp;Han Liu \\n (,&nbsp;),&nbsp;Hairui Bai \\n (,&nbsp;),&nbsp;Tengfei Li \\n (,&nbsp;),&nbsp;Muhammad Hamza Maqsood,&nbsp;Chang Liu \\n (,&nbsp;),&nbsp;Bohao Song \\n (,&nbsp;),&nbsp;Na Chen \\n (,&nbsp;),&nbsp;Guanghao Lu \\n (,&nbsp;),&nbsp;Chao Gao \\n (,&nbsp;),&nbsp;Yuhang Liu \\n (,&nbsp;),&nbsp;Wenyan Su \\n (,&nbsp;),&nbsp;Huiling Du \\n (,&nbsp;),&nbsp;Ruijie Ma \\n (,&nbsp;),&nbsp;Wei Ma \\n (,&nbsp;),&nbsp;Qunping Fan \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-024-3167-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of high-performance near-infrared (NIR) absorbing electron acceptors is a major challenge in achieving high short-circuit current density (<i>J</i><sub>SC</sub>) to increase power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, three new multi-heteroatomized Y-series acceptors (bi-asy-Y-Br, bi-asy-Y-FBr, and bi-asy-Y-FBrF) were developed by combining dual-asymmetric selenium-fused core and brominated end-groups with different numbers of fluorine substitutions. With gradually increasing fluorination, three acceptors exhibit red-shift absorption. Among them, bi-asy-Y-FBrF presents planar molecular geometry, the maximum average electrostatic potential, and the minimum molecular dipole moment, which are conducive to intramolecular packing and charge transport. Moreover, D18:bi-asy-Y-FBrF active layer presents higher crystallinity, more suitable phase separation, and reduced charge recombination compared to D18:bi-asy-Y-Br and D18:bi-asy-Y-FBr blends. Consequently, among theses binary OSCs, D18:bi-asy-Y-FBrF device achieves a higher PCE of 15.74% with an enhanced <i>J</i><sub>SC</sub> of 26.28 mA cm<sup>−2</sup>, while D18:bi-asy-Y-Br device obtains a moderate PCE of 15.04% with the highest open-circuit voltage (<i>V</i><sub>OC</sub>) of 0.926 V. Inspired by its high <i>V</i><sub>OC</sub> and complementary absorption with NIR-absorbing BTP-eC9 as acceptor, bi-asy-Y-Br is introduced into binary D18:BTP-eC9 to construct ternary OSCs, achieving a further boosted PCE of 19.12%, which is among the top values for the reported green solvent processed OSCs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 3\",\"pages\":\"850 - 859\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40843-024-3167-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3167-7\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3167-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发高性能近红外(NIR)吸收电子受体是实现高短路电流密度(JSC)以提高有机太阳能电池(OSCs)功率转换效率(PCE)的主要挑战。本文通过双不对称硒熔核和不同氟取代数的溴化端基结合,开发了三种新的多杂原子化y系列受体(bi-asy-Y-Br、bi-asy-Y-FBr和bi-asy-Y-FBrF)。随着氟化程度的逐渐增加,三个受体表现出红移吸收。其中,bi-asy-Y-FBrF呈现平面分子几何形状,平均静电势最大,分子偶极矩最小,有利于分子内的堆积和电荷输运。此外,与D18:bi-asy-Y-FBrF共混物和D18:bi-asy-Y-FBrF共混物相比,D18:bi-asy-Y-FBrF活性层具有更高的结晶度、更合适的相分离和更少的电荷复合。因此,在这些二元osc中,D18:bi- sy- y- fbrf器件的PCE为15.74%,JSC增强为26.28 mA cm−2,而D18:bi- sy- y- br器件的PCE为15.04%,开路电压(VOC)最高为0.926 V。受其高VOC和与nir -吸收BTP-eC9作为受体的互补吸收的启发,将bi- sy- y- br引入二元D18:BTP-eC9构建三元osc,进一步提高了19.12%的PCE,这是报道的绿色溶剂加工osc的最高值之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fluorine/bromine/selenium multi-heteroatoms substituted dual-asymmetric electron acceptors for o-xylene processed organic solar cells with 19.12% efficiency

The development of high-performance near-infrared (NIR) absorbing electron acceptors is a major challenge in achieving high short-circuit current density (JSC) to increase power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, three new multi-heteroatomized Y-series acceptors (bi-asy-Y-Br, bi-asy-Y-FBr, and bi-asy-Y-FBrF) were developed by combining dual-asymmetric selenium-fused core and brominated end-groups with different numbers of fluorine substitutions. With gradually increasing fluorination, three acceptors exhibit red-shift absorption. Among them, bi-asy-Y-FBrF presents planar molecular geometry, the maximum average electrostatic potential, and the minimum molecular dipole moment, which are conducive to intramolecular packing and charge transport. Moreover, D18:bi-asy-Y-FBrF active layer presents higher crystallinity, more suitable phase separation, and reduced charge recombination compared to D18:bi-asy-Y-Br and D18:bi-asy-Y-FBr blends. Consequently, among theses binary OSCs, D18:bi-asy-Y-FBrF device achieves a higher PCE of 15.74% with an enhanced JSC of 26.28 mA cm−2, while D18:bi-asy-Y-Br device obtains a moderate PCE of 15.04% with the highest open-circuit voltage (VOC) of 0.926 V. Inspired by its high VOC and complementary absorption with NIR-absorbing BTP-eC9 as acceptor, bi-asy-Y-Br is introduced into binary D18:BTP-eC9 to construct ternary OSCs, achieving a further boosted PCE of 19.12%, which is among the top values for the reported green solvent processed OSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信