Marek Vitek, Michal Peterek, Martin Paur, Libor Motka, Zdenek Hradil, Jaroslav Rehacek, Bohumil Stoklasa
{"title":"哈特曼传感器层析成像在照明范围内相干特性的表征","authors":"Marek Vitek, Michal Peterek, Martin Paur, Libor Motka, Zdenek Hradil, Jaroslav Rehacek, Bohumil Stoklasa","doi":"10.1140/epjp/s13360-025-06107-4","DOIUrl":null,"url":null,"abstract":"<div><p>Characterizing the coherence properties of illumination is essential for assessing imaging quality and system performance in various optical systems. This letter aims to highlight Hartmann sensor tomography, a novel approach integrating wavefront sensing with tomographic reconstruction to measure spatial coherence without scanning. Operating in a non-classical regime, the technique utilizes a custom-designed mask and a maximum-likelihood reconstruction algorithm to estimate the coherence matrix with high precision. The method is experimentally validated using partially coherent sources from collimated multimode fibers with varying core diameters, providing diverse test scenarios. These results are compared with the theoretical predictions of the van Cittert-Zernike theorem, showcasing excellent agreement and demonstrating the method’s ability to reconstruct complex coherence structures accurately and efficiently. Hartmann sensor tomography offers a fast and robust alternative to conventional interferometric techniques for analyzing partially coherent fields, paving the way for applications in imaging, diagnostics, adaptive optics, and other areas where rapid and precise coherence characterization is critical.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjp/s13360-025-06107-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Hartmann sensor tomography for characterization of coherence properties within illumination\",\"authors\":\"Marek Vitek, Michal Peterek, Martin Paur, Libor Motka, Zdenek Hradil, Jaroslav Rehacek, Bohumil Stoklasa\",\"doi\":\"10.1140/epjp/s13360-025-06107-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Characterizing the coherence properties of illumination is essential for assessing imaging quality and system performance in various optical systems. This letter aims to highlight Hartmann sensor tomography, a novel approach integrating wavefront sensing with tomographic reconstruction to measure spatial coherence without scanning. Operating in a non-classical regime, the technique utilizes a custom-designed mask and a maximum-likelihood reconstruction algorithm to estimate the coherence matrix with high precision. The method is experimentally validated using partially coherent sources from collimated multimode fibers with varying core diameters, providing diverse test scenarios. These results are compared with the theoretical predictions of the van Cittert-Zernike theorem, showcasing excellent agreement and demonstrating the method’s ability to reconstruct complex coherence structures accurately and efficiently. Hartmann sensor tomography offers a fast and robust alternative to conventional interferometric techniques for analyzing partially coherent fields, paving the way for applications in imaging, diagnostics, adaptive optics, and other areas where rapid and precise coherence characterization is critical.</p></div>\",\"PeriodicalId\":792,\"journal\":{\"name\":\"The European Physical Journal Plus\",\"volume\":\"140 3\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjp/s13360-025-06107-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Plus\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjp/s13360-025-06107-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06107-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Hartmann sensor tomography for characterization of coherence properties within illumination
Characterizing the coherence properties of illumination is essential for assessing imaging quality and system performance in various optical systems. This letter aims to highlight Hartmann sensor tomography, a novel approach integrating wavefront sensing with tomographic reconstruction to measure spatial coherence without scanning. Operating in a non-classical regime, the technique utilizes a custom-designed mask and a maximum-likelihood reconstruction algorithm to estimate the coherence matrix with high precision. The method is experimentally validated using partially coherent sources from collimated multimode fibers with varying core diameters, providing diverse test scenarios. These results are compared with the theoretical predictions of the van Cittert-Zernike theorem, showcasing excellent agreement and demonstrating the method’s ability to reconstruct complex coherence structures accurately and efficiently. Hartmann sensor tomography offers a fast and robust alternative to conventional interferometric techniques for analyzing partially coherent fields, paving the way for applications in imaging, diagnostics, adaptive optics, and other areas where rapid and precise coherence characterization is critical.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.