{"title":"关于r-中和熵:熵的公式及测度的存在性","authors":"Changguang Dong, Qiujie Qiao","doi":"10.1007/s00220-025-05260-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we study <i>r</i>-neutralized local entropy and derive some entropy formulas. For an ergodic hyperbolic measure of a smooth system, we show that the <i>r</i>-neutralized local entropy equals the Brin-Katok local entropy plus <i>r</i> times the pointwise dimension of the measure. We further establish the existence of ergodic measures that maximize the <i>r</i>-neutralized entropy for certain hyperbolic systems. Moreover, we construct a uniformly hyperbolic system, for which such measures are not unique. Finally, we present some rigidity results related to these ergodic measures.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On r-Neutralized Entropy: Entropy Formula and Existence of Measures Attaining the Supremum\",\"authors\":\"Changguang Dong, Qiujie Qiao\",\"doi\":\"10.1007/s00220-025-05260-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article we study <i>r</i>-neutralized local entropy and derive some entropy formulas. For an ergodic hyperbolic measure of a smooth system, we show that the <i>r</i>-neutralized local entropy equals the Brin-Katok local entropy plus <i>r</i> times the pointwise dimension of the measure. We further establish the existence of ergodic measures that maximize the <i>r</i>-neutralized entropy for certain hyperbolic systems. Moreover, we construct a uniformly hyperbolic system, for which such measures are not unique. Finally, we present some rigidity results related to these ergodic measures.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05260-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05260-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
在这篇文章中,我们研究了r中和局部熵,并推导出一些熵公式。我们证明,对于光滑系统的遍历双曲度量,r-中和局部熵等于布林-卡托克局部熵加上该度量点维的 r 倍。我们进一步证明了对于某些双曲系统,存在能使 r 中和熵最大化的遍历度量。此外,我们还构建了一个均匀双曲系统,对它来说,这种度量不是唯一的。最后,我们提出了与这些遍历度量相关的一些刚性结果。
On r-Neutralized Entropy: Entropy Formula and Existence of Measures Attaining the Supremum
In this article we study r-neutralized local entropy and derive some entropy formulas. For an ergodic hyperbolic measure of a smooth system, we show that the r-neutralized local entropy equals the Brin-Katok local entropy plus r times the pointwise dimension of the measure. We further establish the existence of ergodic measures that maximize the r-neutralized entropy for certain hyperbolic systems. Moreover, we construct a uniformly hyperbolic system, for which such measures are not unique. Finally, we present some rigidity results related to these ergodic measures.
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.