IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-01-28 DOI:10.1007/s11581-025-06088-5
Chen Haizhong, Hou Huiheng, Liu Feng, Shen Xin
{"title":"Based on NARXNN-PF state of charge estimation for lithium batteries","authors":"Chen Haizhong,&nbsp;Hou Huiheng,&nbsp;Liu Feng,&nbsp;Shen Xin","doi":"10.1007/s11581-025-06088-5","DOIUrl":null,"url":null,"abstract":"<div><p>The state of charge (SOC) of lithium-ion batteries is vital for efficient energy management and prolonging battery lifespan. To improve the accuracy of SOC estimation for lithium-ion batteries, this paper proposes an improved genetic algorithm (IGA) and a nonlinear autoregressive particle filter (NARXNN-PF: nonlinear autoregressive neural network with exogenous inputs integrated with particle filter) for parameter identification and SOC estimation, respectively. Based on the dual-polarization model, parameter identification is achieved by minimizing terminal voltage errors while accounting for uncertainties in initial conditions and measurement errors. Using the accurately identified model parameters, the NARXNN-PF is applied for online estimation. The SOC predictions generated by the NARXNN serve as prior information for the particle filter. During particle weight updates, the predictive capability of the NARXNN is leveraged to refine particle weights, optimizing their distribution and thereby enhancing the algorithm’s overall accuracy and robustness.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 3","pages":"2473 - 2486"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06088-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池的电荷状态(SOC)对于高效能源管理和延长电池寿命至关重要。为了提高锂离子电池 SOC 估算的准确性,本文提出了一种改进遗传算法(IGA)和一种非线性自回归粒子滤波器(NARXNN-PF:与粒子滤波器集成的外生输入非线性自回归神经网络),分别用于参数识别和 SOC 估算。基于双极化模型,在考虑初始条件不确定性和测量误差的同时,通过最小化终端电压误差实现参数识别。利用准确识别的模型参数,NARXNN-PF 可用于在线估算。NARXNN 生成的 SOC 预测可作为粒子滤波器的先验信息。在粒子权重更新过程中,NARXNN 的预测能力将被用来完善粒子权重,优化粒子权重的分布,从而提高算法的整体准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Based on NARXNN-PF state of charge estimation for lithium batteries

The state of charge (SOC) of lithium-ion batteries is vital for efficient energy management and prolonging battery lifespan. To improve the accuracy of SOC estimation for lithium-ion batteries, this paper proposes an improved genetic algorithm (IGA) and a nonlinear autoregressive particle filter (NARXNN-PF: nonlinear autoregressive neural network with exogenous inputs integrated with particle filter) for parameter identification and SOC estimation, respectively. Based on the dual-polarization model, parameter identification is achieved by minimizing terminal voltage errors while accounting for uncertainties in initial conditions and measurement errors. Using the accurately identified model parameters, the NARXNN-PF is applied for online estimation. The SOC predictions generated by the NARXNN serve as prior information for the particle filter. During particle weight updates, the predictive capability of the NARXNN is leveraged to refine particle weights, optimizing their distribution and thereby enhancing the algorithm’s overall accuracy and robustness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信