多功能锚定效应使基于锌粉的超稳定 3D 打印阳极成为可能

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Leiqing Cao  (, ), Fan Bu  (, ), Yuxuan Wang  (, ), Yong Gao  (, ), Wenbo Zhao  (, ), Jiayu Yang  (, ), Jipeng Chen  (, ), Xi Xu  (, ), Cao Guan  (, )
{"title":"多功能锚定效应使基于锌粉的超稳定 3D 打印阳极成为可能","authors":"Leiqing Cao \n (,&nbsp;),&nbsp;Fan Bu \n (,&nbsp;),&nbsp;Yuxuan Wang \n (,&nbsp;),&nbsp;Yong Gao \n (,&nbsp;),&nbsp;Wenbo Zhao \n (,&nbsp;),&nbsp;Jiayu Yang \n (,&nbsp;),&nbsp;Jipeng Chen \n (,&nbsp;),&nbsp;Xi Xu \n (,&nbsp;),&nbsp;Cao Guan \n (,&nbsp;)","doi":"10.1007/s40843-024-3174-9","DOIUrl":null,"url":null,"abstract":"<div><p>Zinc powder-based anodes encounter significant challenges, including severe side-reactions and non-uniform Zn plating-stripping processes. These issues lead to poor reversibility and low zinc utilization, which substantially impede their practical applications. Herein, we fabricated a multifunctional carbonyl-containing zinc metharcylate (ZMA) layer on the surface of three-dimensional (3D) zinc powder anode through <i>in-situ</i> modification. The ZMA layer with high electronegativity and highly nucleophilic carbonyl group assists the de-solvation process, which is conducive to the Zn<sup>2+</sup> transport and homogenization of the ionic flux. In addition, the hydrophobic carbon chains in ZMA work as a protective layer to reduce the Zn powder direct contact with free-water and significantly improving side-reactions resistance. Finally, through the synergistic effect of ZMA and 3D Zn structure, the prepared electrode could cycle stably at 20 mA cm<sup>−2</sup>/20 mAh cm<sup>−2</sup> for 1153 h (depth of discharge: 38.10%). The stable 3D Zn-MnO<sub>2</sub> battery with a high capacity retention (84.2% over 500 cycles) is also demonstrated.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 3","pages":"897 - 905"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional anchoring effect enables ultra-stable 3D-printed zinc powder-based anode\",\"authors\":\"Leiqing Cao \\n (,&nbsp;),&nbsp;Fan Bu \\n (,&nbsp;),&nbsp;Yuxuan Wang \\n (,&nbsp;),&nbsp;Yong Gao \\n (,&nbsp;),&nbsp;Wenbo Zhao \\n (,&nbsp;),&nbsp;Jiayu Yang \\n (,&nbsp;),&nbsp;Jipeng Chen \\n (,&nbsp;),&nbsp;Xi Xu \\n (,&nbsp;),&nbsp;Cao Guan \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-024-3174-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zinc powder-based anodes encounter significant challenges, including severe side-reactions and non-uniform Zn plating-stripping processes. These issues lead to poor reversibility and low zinc utilization, which substantially impede their practical applications. Herein, we fabricated a multifunctional carbonyl-containing zinc metharcylate (ZMA) layer on the surface of three-dimensional (3D) zinc powder anode through <i>in-situ</i> modification. The ZMA layer with high electronegativity and highly nucleophilic carbonyl group assists the de-solvation process, which is conducive to the Zn<sup>2+</sup> transport and homogenization of the ionic flux. In addition, the hydrophobic carbon chains in ZMA work as a protective layer to reduce the Zn powder direct contact with free-water and significantly improving side-reactions resistance. Finally, through the synergistic effect of ZMA and 3D Zn structure, the prepared electrode could cycle stably at 20 mA cm<sup>−2</sup>/20 mAh cm<sup>−2</sup> for 1153 h (depth of discharge: 38.10%). The stable 3D Zn-MnO<sub>2</sub> battery with a high capacity retention (84.2% over 500 cycles) is also demonstrated.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 3\",\"pages\":\"897 - 905\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3174-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3174-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锌粉基阳极面临着严峻的挑战,包括严重的副反应和不均匀的镀锌剥离过程。这些问题导致可逆性差和锌利用率低,严重阻碍了它们的实际应用。在此,我们通过原位改性在三维(3D)锌粉阳极表面制备了含羰基的多功能甲基丙烯酸锌(ZMA)层。具有高电负性和高亲核性羰基的 ZMA 层有助于脱溶过程,有利于 Zn2+ 的传输和离子通量的均匀化。此外,ZMA 中的疏水碳链还能起到保护层的作用,减少 Zn 粉末与自由水的直接接触,显著提高抗副反应能力。最后,通过 ZMA 和三维 Zn 结构的协同作用,制备的电极可以在 20 mA cm-2/20 mAh cm-2 的条件下稳定循环 1153 h(放电深度:38.10%)。三维 Zn-MnO2 电池的稳定性和高容量保持率(500 次循环 84.2%)也得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifunctional anchoring effect enables ultra-stable 3D-printed zinc powder-based anode

Zinc powder-based anodes encounter significant challenges, including severe side-reactions and non-uniform Zn plating-stripping processes. These issues lead to poor reversibility and low zinc utilization, which substantially impede their practical applications. Herein, we fabricated a multifunctional carbonyl-containing zinc metharcylate (ZMA) layer on the surface of three-dimensional (3D) zinc powder anode through in-situ modification. The ZMA layer with high electronegativity and highly nucleophilic carbonyl group assists the de-solvation process, which is conducive to the Zn2+ transport and homogenization of the ionic flux. In addition, the hydrophobic carbon chains in ZMA work as a protective layer to reduce the Zn powder direct contact with free-water and significantly improving side-reactions resistance. Finally, through the synergistic effect of ZMA and 3D Zn structure, the prepared electrode could cycle stably at 20 mA cm−2/20 mAh cm−2 for 1153 h (depth of discharge: 38.10%). The stable 3D Zn-MnO2 battery with a high capacity retention (84.2% over 500 cycles) is also demonstrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信