I. A. Nagornov, V. M. Sapronova, Ph. Y. Gorobtsov, A. S. Mokrushin, N. P. Simonenko, E. P. Simonenko, N. T. Kuznetsov
{"title":"KBr保护熔体中Ti3AlC2 MAX相的合成","authors":"I. A. Nagornov, V. M. Sapronova, Ph. Y. Gorobtsov, A. S. Mokrushin, N. P. Simonenko, E. P. Simonenko, N. T. Kuznetsov","doi":"10.1134/S0036023624603519","DOIUrl":null,"url":null,"abstract":"<p>The characteristics of the Ti<sub>3</sub>AlC<sub>2</sub> MAX phase in the protective melt of KBr salt have been studied in relation to the synthesis temperature (within the range of 1150–1300°C) and the molar ratio of the initial reagents. It has been established that the synthesis conditions exert a significant influence on the phase composition of the resulting products. X-ray powder diffraction has revealed that the content of the Ti<sub>3</sub>AlC<sub>2</sub> MAX phase exhibits a non-monotonic variation with varying process temperature, reaching maximum values at temperatures of 1175 and 1275°C. The results of the scanning electron microscopy (SEM) and the energy-dispersive X-ray spectroscopy (EDX) mapping experiments have confirmed the formation of the MAX phase at all synthesis temperatures employed, with the highest content recorded at temperatures of 1175 and 1275°C. The thermal behavior of the synthesis products of the Ti<sub>3</sub>AlC<sub>2</sub> MAX phase at temperatures of 1175 and 1275°C (5 h exposure time) has been investigated using a DSC–TGA device. The yield work for the obtained samples has been determined by Kelvin probe force microscopy.</p>","PeriodicalId":762,"journal":{"name":"Russian Journal of Inorganic Chemistry","volume":"69 14","pages":"2184 - 2192"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Ti3AlC2 MAX Phase in KBr Protective Melt\",\"authors\":\"I. A. Nagornov, V. M. Sapronova, Ph. Y. Gorobtsov, A. S. Mokrushin, N. P. Simonenko, E. P. Simonenko, N. T. Kuznetsov\",\"doi\":\"10.1134/S0036023624603519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The characteristics of the Ti<sub>3</sub>AlC<sub>2</sub> MAX phase in the protective melt of KBr salt have been studied in relation to the synthesis temperature (within the range of 1150–1300°C) and the molar ratio of the initial reagents. It has been established that the synthesis conditions exert a significant influence on the phase composition of the resulting products. X-ray powder diffraction has revealed that the content of the Ti<sub>3</sub>AlC<sub>2</sub> MAX phase exhibits a non-monotonic variation with varying process temperature, reaching maximum values at temperatures of 1175 and 1275°C. The results of the scanning electron microscopy (SEM) and the energy-dispersive X-ray spectroscopy (EDX) mapping experiments have confirmed the formation of the MAX phase at all synthesis temperatures employed, with the highest content recorded at temperatures of 1175 and 1275°C. The thermal behavior of the synthesis products of the Ti<sub>3</sub>AlC<sub>2</sub> MAX phase at temperatures of 1175 and 1275°C (5 h exposure time) has been investigated using a DSC–TGA device. The yield work for the obtained samples has been determined by Kelvin probe force microscopy.</p>\",\"PeriodicalId\":762,\"journal\":{\"name\":\"Russian Journal of Inorganic Chemistry\",\"volume\":\"69 14\",\"pages\":\"2184 - 2192\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0036023624603519\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0036023624603519","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Synthesis of Ti3AlC2 MAX Phase in KBr Protective Melt
The characteristics of the Ti3AlC2 MAX phase in the protective melt of KBr salt have been studied in relation to the synthesis temperature (within the range of 1150–1300°C) and the molar ratio of the initial reagents. It has been established that the synthesis conditions exert a significant influence on the phase composition of the resulting products. X-ray powder diffraction has revealed that the content of the Ti3AlC2 MAX phase exhibits a non-monotonic variation with varying process temperature, reaching maximum values at temperatures of 1175 and 1275°C. The results of the scanning electron microscopy (SEM) and the energy-dispersive X-ray spectroscopy (EDX) mapping experiments have confirmed the formation of the MAX phase at all synthesis temperatures employed, with the highest content recorded at temperatures of 1175 and 1275°C. The thermal behavior of the synthesis products of the Ti3AlC2 MAX phase at temperatures of 1175 and 1275°C (5 h exposure time) has been investigated using a DSC–TGA device. The yield work for the obtained samples has been determined by Kelvin probe force microscopy.
期刊介绍:
Russian Journal of Inorganic Chemistry is a monthly periodical that covers the following topics of research: the synthesis and properties of inorganic compounds, coordination compounds, physicochemical analysis of inorganic systems, theoretical inorganic chemistry, physical methods of investigation, chemistry of solutions, inorganic materials, and nanomaterials.