{"title":"基于纳米富硼掺杂碳纳米壁电极的 4-硝基甲苯高灵敏度伏安传感器,用于水安全检测","authors":"Paweł Rutecki, Michał Sobaszek, Anna Dettlaff","doi":"10.1007/s00604-025-07065-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study demonstrates a highly efficient electrochemical sensing platform for 4-nitrotoluene (4-NT) detection based on nanoflake-rich boron-doped carbon nanowall (NF-BCNW) electrodes. The electrodes, fabricated using a one-step deposition process, exhibit remarkable properties, including fast charge transfer and a developed surface area. The research shows the high efficiency of 4-NT detection in laboratory-grade aqueous samples, with a low detection limit (LOD) of 10.2 nM and a high sensitivity of 10.42 ± 0.31 μA µM<sup>−1</sup> cm<sup>−2</sup>. The practical applicability of the 4-NT sensor was also tested in an environmental sample, tap water, resulting in an LOD of 20.5 nM. The proposed electrode demonstrated considerable sensitivity for the sensing of 4-NT in the presence of various interfering ions and exhibited high stability over 380 days. These findings position the NF-BCNW electrochemical sensor as an effective tool for water safety and environmental monitoring applications.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High sensitivity voltammetric sensor of 4-nitrotoluene based on nanoflake-rich boron-doped carbon nanowall electrode for water safety\",\"authors\":\"Paweł Rutecki, Michał Sobaszek, Anna Dettlaff\",\"doi\":\"10.1007/s00604-025-07065-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study demonstrates a highly efficient electrochemical sensing platform for 4-nitrotoluene (4-NT) detection based on nanoflake-rich boron-doped carbon nanowall (NF-BCNW) electrodes. The electrodes, fabricated using a one-step deposition process, exhibit remarkable properties, including fast charge transfer and a developed surface area. The research shows the high efficiency of 4-NT detection in laboratory-grade aqueous samples, with a low detection limit (LOD) of 10.2 nM and a high sensitivity of 10.42 ± 0.31 μA µM<sup>−1</sup> cm<sup>−2</sup>. The practical applicability of the 4-NT sensor was also tested in an environmental sample, tap water, resulting in an LOD of 20.5 nM. The proposed electrode demonstrated considerable sensitivity for the sensing of 4-NT in the presence of various interfering ions and exhibited high stability over 380 days. These findings position the NF-BCNW electrochemical sensor as an effective tool for water safety and environmental monitoring applications.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"192 4\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-025-07065-5\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07065-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
High sensitivity voltammetric sensor of 4-nitrotoluene based on nanoflake-rich boron-doped carbon nanowall electrode for water safety
This study demonstrates a highly efficient electrochemical sensing platform for 4-nitrotoluene (4-NT) detection based on nanoflake-rich boron-doped carbon nanowall (NF-BCNW) electrodes. The electrodes, fabricated using a one-step deposition process, exhibit remarkable properties, including fast charge transfer and a developed surface area. The research shows the high efficiency of 4-NT detection in laboratory-grade aqueous samples, with a low detection limit (LOD) of 10.2 nM and a high sensitivity of 10.42 ± 0.31 μA µM−1 cm−2. The practical applicability of the 4-NT sensor was also tested in an environmental sample, tap water, resulting in an LOD of 20.5 nM. The proposed electrode demonstrated considerable sensitivity for the sensing of 4-NT in the presence of various interfering ions and exhibited high stability over 380 days. These findings position the NF-BCNW electrochemical sensor as an effective tool for water safety and environmental monitoring applications.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.