多孔芯-纳米复合材料增强面板圆柱夹层壳的屈曲和自由振动特性

IF 4.4 3区 工程技术 Q1 ENGINEERING, CIVIL
Ali Razgordanisharahi, Ata Alipour Ghassabi, Gullu Kiziltas Sendur, Yaser Kiani, Christian Hellmich
{"title":"多孔芯-纳米复合材料增强面板圆柱夹层壳的屈曲和自由振动特性","authors":"Ali Razgordanisharahi,&nbsp;Ata Alipour Ghassabi,&nbsp;Gullu Kiziltas Sendur,&nbsp;Yaser Kiani,&nbsp;Christian Hellmich","doi":"10.1007/s43452-025-01156-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study addresses a critical gap in the literature by developing a unified analytical model for evaluating the stability and dynamic behavior of cylindrical sandwich shells with functionally graded nanocomposite face sheets and variable-porosity cores. The model incorporates graphene nanoplatelets (GNP) and carbon nanotubes (CNT) as reinforcements, with varying distribution patterns across the nanocomposite face sheets. The governing equations are derived using Hamilton’s principle, and an analytical approach based on the state-space method is applied to compute natural frequencies and critical buckling loads under classical boundary conditions. Verification studies confirm the model’s accuracy. The results highlight the significant effects of geometric and material parameters, including reinforcement and porosity distribution profiles, boundary conditions, and shell dimensions, on the buckling and free vibration responses of the structures. Notably, increasing the porosity ratio reduces the critical buckling load and natural frequencies, while a higher nanoparticle weight fraction enhances the fundamental frequencies and critical buckling load.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buckling and free vibration characteristics of cylindrical sandwich shells with porous cores and nanocomposite-reinforced face sheets\",\"authors\":\"Ali Razgordanisharahi,&nbsp;Ata Alipour Ghassabi,&nbsp;Gullu Kiziltas Sendur,&nbsp;Yaser Kiani,&nbsp;Christian Hellmich\",\"doi\":\"10.1007/s43452-025-01156-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study addresses a critical gap in the literature by developing a unified analytical model for evaluating the stability and dynamic behavior of cylindrical sandwich shells with functionally graded nanocomposite face sheets and variable-porosity cores. The model incorporates graphene nanoplatelets (GNP) and carbon nanotubes (CNT) as reinforcements, with varying distribution patterns across the nanocomposite face sheets. The governing equations are derived using Hamilton’s principle, and an analytical approach based on the state-space method is applied to compute natural frequencies and critical buckling loads under classical boundary conditions. Verification studies confirm the model’s accuracy. The results highlight the significant effects of geometric and material parameters, including reinforcement and porosity distribution profiles, boundary conditions, and shell dimensions, on the buckling and free vibration responses of the structures. Notably, increasing the porosity ratio reduces the critical buckling load and natural frequencies, while a higher nanoparticle weight fraction enhances the fundamental frequencies and critical buckling load.</p></div>\",\"PeriodicalId\":55474,\"journal\":{\"name\":\"Archives of Civil and Mechanical Engineering\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil and Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43452-025-01156-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-025-01156-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过开发一个统一的分析模型来评估具有功能梯度纳米复合材料面片和可变孔隙率岩心的圆柱形夹层壳的稳定性和动态行为,解决了文献中的一个关键空白。该模型采用石墨烯纳米片(GNP)和碳纳米管(CNT)作为增强剂,在纳米复合材料表面上具有不同的分布模式。利用Hamilton原理推导了控制方程,并采用基于状态空间法的解析方法计算了经典边界条件下的固有频率和临界屈曲载荷。验证研究证实了模型的准确性。结果表明几何参数和材料参数(包括配筋和孔隙率分布曲线、边界条件和壳体尺寸)对结构的屈曲和自由振动响应有显著影响。值得注意的是,孔隙率的增加降低了临界屈曲载荷和固有频率,而纳米颗粒质量分数的增加提高了基频和临界屈曲载荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Buckling and free vibration characteristics of cylindrical sandwich shells with porous cores and nanocomposite-reinforced face sheets

Buckling and free vibration characteristics of cylindrical sandwich shells with porous cores and nanocomposite-reinforced face sheets

This study addresses a critical gap in the literature by developing a unified analytical model for evaluating the stability and dynamic behavior of cylindrical sandwich shells with functionally graded nanocomposite face sheets and variable-porosity cores. The model incorporates graphene nanoplatelets (GNP) and carbon nanotubes (CNT) as reinforcements, with varying distribution patterns across the nanocomposite face sheets. The governing equations are derived using Hamilton’s principle, and an analytical approach based on the state-space method is applied to compute natural frequencies and critical buckling loads under classical boundary conditions. Verification studies confirm the model’s accuracy. The results highlight the significant effects of geometric and material parameters, including reinforcement and porosity distribution profiles, boundary conditions, and shell dimensions, on the buckling and free vibration responses of the structures. Notably, increasing the porosity ratio reduces the critical buckling load and natural frequencies, while a higher nanoparticle weight fraction enhances the fundamental frequencies and critical buckling load.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Civil and Mechanical Engineering
Archives of Civil and Mechanical Engineering 工程技术-材料科学:综合
CiteScore
6.80
自引率
9.10%
发文量
201
审稿时长
4 months
期刊介绍: Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science. The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics. The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation. In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信