芳香族共轭π离子液体自模板合成纳米多孔碳

IF 3.1 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
T. Seki, R. Futamura, K. Nakamura, Y. Murata, R. Sekiguchi, T. Iiyama
{"title":"芳香族共轭π离子液体自模板合成纳米多孔碳","authors":"T. Seki,&nbsp;R. Futamura,&nbsp;K. Nakamura,&nbsp;Y. Murata,&nbsp;R. Sekiguchi,&nbsp;T. Iiyama","doi":"10.1007/s10450-025-00598-4","DOIUrl":null,"url":null,"abstract":"<div><p>Ionic liquids (ILs) are liquids composed of pure ionic components with melting points near room temperature that exhibit unique properties. They are also known as designer solvents. In particular, π-conjugated functional ILs demonstrate photoluminescent properties, making them promising for new applications. In addition, the organic moieties of ILs can function as precursors for carbon materials, facilitating efficient polymerization reactions at high temperatures. In this paper, we present the structural aspects of nanoporous carbon materials derived from π-conjugated ILs, revealing that the domain structure of these ILs plays a crucial role in the carbonization process, as observed from the florescence spectroscopy of the precursor π-conjugated IL. This paper proposes a synthesis process for nanoporous carbon from π-conjugated ILs, demonstrating the thermal stability of ILs with mesoscopic domain structures, thereby promoting carbonization reactions while pore formation occurs simultaneously. This study expands the potential applications of π-conjugated ILs across various fields, and contributes to a deeper understanding of their unique properties from microscopic observations.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-template synthesis of nanoporous carbons from π-conjugated ionic liquids with aromatic functionalities\",\"authors\":\"T. Seki,&nbsp;R. Futamura,&nbsp;K. Nakamura,&nbsp;Y. Murata,&nbsp;R. Sekiguchi,&nbsp;T. Iiyama\",\"doi\":\"10.1007/s10450-025-00598-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ionic liquids (ILs) are liquids composed of pure ionic components with melting points near room temperature that exhibit unique properties. They are also known as designer solvents. In particular, π-conjugated functional ILs demonstrate photoluminescent properties, making them promising for new applications. In addition, the organic moieties of ILs can function as precursors for carbon materials, facilitating efficient polymerization reactions at high temperatures. In this paper, we present the structural aspects of nanoporous carbon materials derived from π-conjugated ILs, revealing that the domain structure of these ILs plays a crucial role in the carbonization process, as observed from the florescence spectroscopy of the precursor π-conjugated IL. This paper proposes a synthesis process for nanoporous carbon from π-conjugated ILs, demonstrating the thermal stability of ILs with mesoscopic domain structures, thereby promoting carbonization reactions while pore formation occurs simultaneously. This study expands the potential applications of π-conjugated ILs across various fields, and contributes to a deeper understanding of their unique properties from microscopic observations.</p></div>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":\"31 3\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10450-025-00598-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-025-00598-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

离子液体是由纯离子组分组成的液体,熔点接近室温,具有独特的性能。它们也被称为设计溶剂。特别是π共轭功能化ILs具有发光特性,具有广阔的应用前景。此外,il的有机部分可以作为碳材料的前驱体,促进高温下的高效聚合反应。本文从结构方面介绍了由π共轭IL衍生的纳米多孔碳材料,从前驱体π共轭IL的荧光光谱中可以看出,这些IL的结构在炭化过程中起着至关重要的作用。本文提出了一种由π共轭IL合成纳米多孔碳的方法,证明了具有介观结构的IL的热稳定性。从而促进碳化反应,同时孔隙形成。本研究拓展了π共轭il在各个领域的潜在应用,并有助于从微观观察中更深入地了解其独特的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-template synthesis of nanoporous carbons from π-conjugated ionic liquids with aromatic functionalities

Self-template synthesis of nanoporous carbons from π-conjugated ionic liquids with aromatic functionalities

Ionic liquids (ILs) are liquids composed of pure ionic components with melting points near room temperature that exhibit unique properties. They are also known as designer solvents. In particular, π-conjugated functional ILs demonstrate photoluminescent properties, making them promising for new applications. In addition, the organic moieties of ILs can function as precursors for carbon materials, facilitating efficient polymerization reactions at high temperatures. In this paper, we present the structural aspects of nanoporous carbon materials derived from π-conjugated ILs, revealing that the domain structure of these ILs plays a crucial role in the carbonization process, as observed from the florescence spectroscopy of the precursor π-conjugated IL. This paper proposes a synthesis process for nanoporous carbon from π-conjugated ILs, demonstrating the thermal stability of ILs with mesoscopic domain structures, thereby promoting carbonization reactions while pore formation occurs simultaneously. This study expands the potential applications of π-conjugated ILs across various fields, and contributes to a deeper understanding of their unique properties from microscopic observations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Adsorption
Adsorption 工程技术-工程:化工
CiteScore
8.10
自引率
3.00%
发文量
18
审稿时长
2.4 months
期刊介绍: The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news. Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design. Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信